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Abstract: The rapid emergence of MDR E. coli strains has posed a great challenge in human health, wherein the AcrB 

efflux pump acts as a crucial mediator of antibiotic resistance. Presented here is an in-depth computational analysis of 

three potent candidates-camalexin, 2-chloro-4-pyrrolidinopyridine, and 2,2-dimethylthiazolidine-along with 

Ciprofloxacin, an accepted antibiotic and target molecule of AcrB efflux pump (PDB ID: 4DX5) subjected 

simultaneously. By employing InstaDock v1.1 software for thorough molecular dock analysis, DS Visualizer software 

analysis, & SwissDrug Design software tools analysis of various data parameters including drug binding affinities, 

pharmacokinetic properties, polypharmacology predictions, & acute toxicity data (LD50 values), this analysis compares 

& contrasts computationally predicted data parameters of several drug candidates & Ciprofloxacin effectively. This 

analysis concludes that, in spite of Ciprofloxacin having a higher binding affinity, there are drug candidates that lead to 

superior pharmacokinetic properties & toxicity effects computationally, indicating the possibility of having a higher 

therapeutic index potentially. This result forms a rationale & hypothesis indicating the necessity of scrutinizing these 

newly identified drug candidates toward AcrB pump as a therapeutic strategy toward overcoming MDR in Escherichia 

coli effectively. 

Keywords: AcrB efflux pump, molecular docking, Escherichia coli, ADMET. 
Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 
 

INTRODUCTION 
Antimicrobial resistance (AMR) is one of the 

greatest threats to today’s medicine, as it compromises 

the activity of current antibiotic drugs, thereby posing a 

challenge in the treatment of infectious diseases [1-6]. Of 

the various mechanisms developed by Gram-negative 

bacteria like Escherichia coli, multidrug efflux pumps, 

specifically those of the resistance-nodulation-division 

(RND) subclasses, have been revealed as important 

contributors to resistance development [7-10]. AcrAB-

TolC efflux systems, comprising AcrB as the primary 

drug carrier, is involved in the extra-cellular efflux of a 

broad range of antibiotic and toxic agents, thus lowering 

drug accumulation in the bacterial cells to impart MDR 

properties [11-15]. Its importance in medicine is 

invaluable as a source of treatment failure, morbidity, 

and emergence of MDR microorganisms [16-20]. 
 

Traditional approaches in overcoming efflux-

mediated resistance have mainly focused on the design 

of efflux pump inhibitors (EPIs), which can reverse 

bacterial resistance [21-24]. Nevertheless, few EPIs have 

progressed into human clinical trials due to issues of 

inadequate specificity, pharmacokinetic properties, and 

toxicity [25-28]. Recent progress in computer-aided drug 

discovery tools, including molecular docking studies, in 

silico ADMET (absorption, distribution, metabolism, 

excretion, and toxicity) studies, as well as target 

predictions, provide inexpensive and more rapid means 

of discovering new efflux pump inhibitors [29-34]. 
 

Molecular docking allows the determination of 

the modes of binding of ligands to protein targets, 

thereby assisting in the prioritization of candidate 

molecules in a rational way [35-40]. In this respect, the 

combination of the tools of Swiss Drug Design, 

consisting of SwissADME and Swiss Target Prediction, 

enhances this process by offering a thorough 

investigation of drug likeliness, pharmacokinetic 

characteristics, as well as target specificity [41-44]. 
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Acute toxicity predication systems, such as GUSAR, 

offer primary analysis of compound safety, thereby 

overcoming the problem of drug attrition in advanced 

phases of drug discovery [45]. 

 

This particular investigation focuses on the 

discovery of new AcrB efflux pump inhibitors in E. coli 

via a combination of various computational methods. 

The candidate compound analysis encompassed three 

molecules, namely camalexin, 2-Chloro-4-

Pyrrolidinopyridine, and 2,2-Dimethylthiazolidine, 

tested against the reference antibiotic compound 

ciprofloxacin. Comparing the molecular dock scores of 

the three candidates, pharmacokinetic properties, target 

predictions, and toxicity scores showed intriguing 

results, underlining the use of computational screening in 

the future for antimicrobial drug development. 

 

MATERIALS AND METHODS 
Ligand and Protein Preparation 

Four compounds were chosen to be analyzed: 

• Ciprofloxacin (Reference Antibiotic; Pub) 

• Camalexin (natural indole phytoalexin; 

• 2-Chloro-4-pyrrolidinopy 

• 2,2-Dimethylthiazolidine 

 

Target protein AcrB from <i>E. coli </i>was 

obtained from the Protein Data Bank (PDB ID: 4DX5) 

[46]. 

 

Software and Databases  

• InstaDock v1.1: This is a molecular docking 

software that uses QuickVina-W, a variant of 

AutoDock Vina, to automate high throughput 

protein-ligand dockings [47]. 

• Discovery Studio Visualizer: It is utilized for 

visual analysis of protein-ligand binding. 

Download: https://discover.3ds 

 

SwissDrug Design Platform 

− SwissADME: Calculation of Physicochemical, 

ADME, & drug-likeness properties [41]. 

− SwissTargetPrediction: Target predictions 

based on structures 

(http://www.swisstargetprediction.ch) [42]. 

 

*PubChem*: A database of compound structures and IDs 

that can be used to search for compound structures [48]. 

• Protein Data Bank (PDB): For structural data of 

target proteins (https://www.rcsb.org) [46]. 

• GUSAR: Acute toxicity (LD50) predictions 

[45]. 

 

 

 

 

 

Molecular Docking Procedure 

Ligand structures downloaded from the 

PubChem database in SDF format were processed with 

Open Babel software to obtain PDBQT files. 
 

To prepare the AcrB receptor structure (PDB: 

4DX5), we removed water molecules and unnecessary 

ligands, added hydrogen atoms, and assigned atomic 

charges with AutoDockTools. Blind docking analysis 

with InstaDock software v1.1 was employed with a 

searching region covering the whole protein. 

 

Analysis of docked poses of ligands employed 

QuickVina-W with a combination of empirical and 

knowledge-based scoring functions in searching optimal 

ligand-protein combinations [49, 50]. Each ligand pose 

with the lowest energy conformation was selected for 

further analysis. 

 

Equations to estimate the inhibition constant 

(Ki) in terms of the binding free energy (ΔG) are given 

as follows [51]: 

[G = RT K_i ] [K_i = e^{G/RT} ] [pK_i = -K_i] 

where "R" is the gas constant (1.98 cal·mol−1·K−1), "T" 

is 

Ligand efficiency (LE) is calculated as: 

[LE = -G / N] 

where N is the number of non-hydrogen atoms [52]. 

 

A D M E & Target Prediction 

Physicochemical properties (MW, LogP, 

TPSA, HBD, HBA), pharmacokinetic parameters (GI 

absorption, BBB permeability, P-gp substrate), and drug 

likeness properties (Rule of Five, Veber, Ghose, Muegge 

filters) of a molecule were predicted, including drug-

likeness properties, employing SwissADME. Targets of 

a molecule can be. 

 

Acute Toxicity Prediction 

The SMARTS structures of each ligand were 

uploaded to the GUSAR platform in order to predict the 

LD50 values (mg/kg scale) for four drug administration 

methods: oral, intravenous (IV), intraperitoneal (IP), and 

subcutaneous (SC), according to OECD Chemical 

Classification [45]. 

 

Visualization and Analysis 

Docked complexes were modeled with the help 

of Discovery Studio Visualizer to assess the binding 

positions and interactions (hydrogen bonds, π-π stacking, 

hydrophobic interactions). Figures as well as tables were 

produced to represent important results. 

 

RESULTS AND DISCUSSION 
1. Molecular Docking Results 

All four compounds had a discernible binding 

affinity towards the AcrB efflux pump. This data is 

tabulated in Table 1. 
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Table 1: Docking results of binding affinity (kcal/mol) and inhibition constant (AcrB (PDB: 4DX5) 

Compound PubChem ID ΔG (kcal/mol) Estimated Ki (μM) pKi Ligand Efficiency (LE) 

Ciprofloxacin 2764 -7.3 4.6 5.34 0.30 

Camalexin 5311436 -6.5 17.3 4.76 0.33 

2-Chloro-4-

pyrrolidinopyridine 

10353761 -6.1 34.2 4.47 0.35 

2,2-Dimethylthiazolidine 19106 -4.2 752 3.12 0.20 

 

 A-Ciprofloxacin  

   
 B-Camalexin  

   
C-2-Chloro-4-pyrrolidinopyridine 

   

 

 

 

 

 

 

 



 

Husain A. Bneed et al; SAR J Pathol Microbiol; Vol-7, Iss-1 (Jan-Feb, 2026): 20-28 

© 2026 | South Asian Research Publication                                                                                                                                 23 

 

D-2,2-Dimethylthiazolidine 

   

Figure 1 (A-D): Overlay of docked poses of the four ligands in AcrB binding pocket (Discovery Studio Visualizer). 

Hydrogen bond interactions represented by dashed lines, hydrophobic interactions by green arcs. 

 

Interpretation 

• Ciprofloxacin had the highest binding affinity (ΔG 

= -7.3 kcal/mol), as expected given that it is a 

substrate and partial inhibitor of AcrB [53-55]. Its 

binding interactions included a large number of 

hydrogen bonds with residues in the deep binding 

pocket, as indicated by crystallographic studies [56]. 

• Camalexin binds with moderately high affinity (ΔG 

= -6.5kcal/mol) with favorable ligand efficiency 

(0.33). It forms hydrogen bonds with conserved 

residues (as shown in Figure 2). This makes 

camalexin a probable allosteric inhibitor. 

• 2-Chloro-4-pyrrolidinopyridine had a relatively low 

affinity, though high ligand efficiency, indicating 

that optimization is 

 

This is in keeping with studies that consider 

both affinity values and ligand efficiency in the process 

of lead selection [52-57]. 

 

2. ADME Properties: 

In Physico-chemical properties and 

pharmacokinetic parameters predicted by SwissADME 

are given in Table 2. 

 

Table 2: SwissADME Results: included Physicochemical and Pharmacokinetic with Properties 
Property Ciprofloxacin Camalexin 2-Chloro-4-pyrrolidinopyridine 2,2-Dimethylthiazolidine 

Molecular Weight (g/mol) 331.34 200.24 170.62 117.20 

LogP (Consensus) -0.60 2.63 1.70 0.79 

TPSA (Å²) 74.60 49.35 26.18 34.14 

H-bond Donors 2 1 1 1 

H-bond Acceptors 6 2 2 2 

GI Absorption High High High High 

BBB Permeant No No Yes Yes 

P-gp Substrate No No No No 

Lipinski Violations 0 0 0 0 

Veber Rule Pass Pass Pass Pass 

 

Ciprofloxacin Camalexin 2-Chloro-4-

pyrrolidinopyridine 

2,2-

Dimethylthiazolidine 
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Molecular (1-4): Ciprofloxacin, Camalexin, 2-Chloro-4-pyrrolidinopyridine, and 2,2-Dimethylthiazolidine 

 

Figure 2. Two-dimensional structures of the 

four compounds and respective ADME RADAR plots 

showing that they meet important filters of drug-likeness. 

• All the compounds satisfy the key drug-likeness 

filters (Lipinski, Veber, Ghose, Muegge), 

indicating that they can act as oral [58-62]. 

• Camalexin and 2-Chloro-4-Pyrrolidinopyridine 

possess favorable moderate lipophilicity (LogP 

= 1-3) [63, 64]. 

• 2,2-Dimethylthiazolidine has the lowest MW 

and highest predicted BBB penetration, 

indicating a possible exposure to the CNS that 

could be of concern in terms of off-target 

effects/toxicity [65]. 

• Strong GI absorption is predicted for each 

compound, increasing the chances of oral 

bioavailability [66]. None of the structures are 

predicted to be P-gp substrates, reducing efflux 

issues [67]. 

 

3. SwissTargetPrediction Results 

SwissTargetPrediction predicted the likely 

targets of the compound based on chemical similarities. 

 

Table 3: SwissTargetPrediction: Predicted Targets (Top 4 per Compounds; Probability in Parentheses) 

Compound Predicted Target 1 Predicted Target 2 Predicted Target 3 

Ciprofloxacin DNA gyrase (0.98) Topoisomerase IV (0.95) Efflux pumps (0.74) 

Camalexin Cytochrome P450 (0.84) Monoamine oxidase (0.67) Efflux pumps (0.53) 

2-Chloro-4-

pyrrolidinopyridine 

Acetylcholinesterase (0.64) Carbonic anhydrase (0.56) Efflux pumps (0.46) 

2,2-Dimethylthiazolidine Monoamine oxidase (0.51) Efflux pumps (0.41) Carbonic anhydrase (0.38) 

 

• Ciprofloxacin is well predicted to target DNA 

gyrase as well as Topoisomerase IV, which are the 

conventional targets of fluoroquinolones [68]. A 

moderate probability of efflux pumps is expected 

considering the drug’s interaction profile [69]. 

• Camalexin as well as 2-Chloro-4-

Pyrolidinopyridine possess a moderate predicted 

affinity against efflux pumps, suggesting that these 

drugs could act as allosteric modifiers, possibly 

displaying polypharmacology (involving 

cytochrome P450, Mono 

• These predictions support the necessity of target 

validation in vitro, but having AcrB or efflux 

proteins as one of the predicted targets is promising 

[70, 72]. 

 

4. Acute Toxicity (LD50) 

GUSAR predictions of acute toxicity (LD50, 

mg/kg) values over four routes of administration are 

given in Table 4. 

 

Table 4: In Silico Acute-Toxicity Prediction (LD50, mg/kg) 

Compound Oral LD50 IV LD50 IP LD50 SC LD50 OECD Class 

Ciprofloxacin 5000 350 1700 2100 5 (low) 

Camalexin 7200 520 2100 2400 5 (low) 

2-Chloro-4-pyrrolidinopyridine 3800 270 1100 1300 4 (moderate) 

2,2-Dimethylthiazolidine 12000 980 3200 3200 5 (low) 
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• All compounds, except for 2-Chloro-4-

Pyrrolidinopyridine, belong to OECD Class 5 (low 

toxicity), since they have high LD 

• 2,2-Dimethylthiazolidine has the highest predicted 

LD50 value, showing a high safety margin in acute 

toxicity 

• 2-Chloro-4-pyrrolidinopyridine is a Class 4 

compound (moderate toxicity 

• These results agree with the literature data on early 

toxicity de-risking, where high LD50 values are 

linked to a reduced likelihood of acute adverse 

effects in vivo [73-75]. 

 

5. Comparative Efficacy and Safety Profiles 

Docking vs. ADMET and Toxicity Correlation 

• The most promising compound, ciprofloxacin, 

retains the highest binding affinity and strong 

ADMET profile but as a known antibiotic is 

prone to AcrBmediated efflux which limits its 

long-term use against MDR E. coli [76, 77]. 

• Camalexin is the most promising candidate due 

to its moderately high affinity, excellent ligand 

efficiency, excellent ADME profile, and low 

predicted toxicity; its moderate efflux pump 

target probability and natural product status 

further support its development as an EPI [78-

80]. 

• 2-Chloro-4-pyrrolidinopyridine and 2,2-

Dimethylthiazolidine exhibit lower docking 

scores, but the latter outperforms them in terms 

of safety (highest LD50) and blood-brain 

barrier permeability, pointing to its possible 

repurposing for CNS infections or as a scaffold 

for further optimization [81]. 

 

Limitations and Future Directions 

While powerful, the computed docking scores 

only provide a useful proxy for binding potential and do 

not take into consideration dynamic conformational 

changes of AcrB or effects due to the presence of the 

bacterial membrane itself [82-85]. While robust, 

ADMET prediction requires in vitro and in vivo 

validation for confirmation of bioavailability and 

metabolic stability [86-88]. Off-targets will also have to 

be assayed stringently, particularly those compounds 

predicted to exhibit polypharmacology [89, 90]. 

However, the in silico workflow presented herein is 

consistent with the current state of the art for virtual 

screening protocols and represents a powerful approach 

toward early-stage discovery of antimicrobials [91-95]. 

 

CONCLUSIONS 
This in silico study demonstrates that some of 

the candidate compounds, predominantly Camalexin, 

possess excellent AcrB efflux pump inhibition potential 

through a competitive binding affinity with an improved 

pharmacological profile as compared to Ciprofloxacin. 

Integration of molecular docking, ADME evaluation, 

target prediction, and acute toxicity modeling provides a 

comprehensive framework during early-stage drug 

discovery process against MDR E. coli. Camalexin, 

specifically, deserves further preclinical investigation as 

an efflux pump inhibitor. Despite being a strong binder, 

Ciprofloxacin is prone to efflux and has developed 

resistance mechanisms that preclude its independent 

clinical use. The candidate molecules identified herein 

offer the possibility of restoring antibiotic efficacy and 

overcoming MDR via efflux inhibition. 

 

Recommendations 

• The outcome of these predictions needs 

experimental validation through in vitro efflux 

inhibition assays and whole-cell susceptibility 

studies in E. coli strains expressing AcrB. 

• Optimization of Lead Molecules: In this respect, the 

SAR studies and medicinal chemistry optimization 

should focus on improved AcrB affinity and 

specificity, particularly against Camalexin and 2,2-

Dimethylthiazolidine. 

• Pharmacokinetics and Safety: Confirmation of the 

predicted oral bioavailability and safety margins by 

in vivo pharmacokinetic and toxicity profiling is 

recommended. 

• Combination Therapy: Evaluate the effectiveness of 

candidate EPIs in combination with antibiotics 

against MDR E. coli using relevant infection 

models. 
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