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Abstract: The rapid emergence of MDR E. coli strains has posed a great challenge in human health, wherein the AcrB
efflux pump acts as a crucial mediator of antibiotic resistance. Presented here is an in-depth computational analysis of
three potent candidates-camalexin, 2-chloro-4-pyrrolidinopyridine, and 2,2-dimethylthiazolidine-along with
Ciprofloxacin, an accepted antibiotic and target molecule of AcrB efflux pump (PDB ID: 4DXS5) subjected
simultaneously. By employing InstaDock v1.1 software for thorough molecular dock analysis, DS Visualizer software
analysis, & SwissDrug Design software tools analysis of various data parameters including drug binding affinities,
pharmacokinetic properties, polypharmacology predictions, & acute toxicity data (LD50 values), this analysis compares
& contrasts computationally predicted data parameters of several drug candidates & Ciprofloxacin effectively. This
analysis concludes that, in spite of Ciprofloxacin having a higher binding affinity, there are drug candidates that lead to
superior pharmacokinetic properties & toxicity effects computationally, indicating the possibility of having a higher
therapeutic index potentially. This result forms a rationale & hypothesis indicating the necessity of scrutinizing these
newly identified drug candidates toward AcrB pump as a therapeutic strategy toward overcoming MDR in Escherichia

coli effectively.
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INTRODUCTION

Antimicrobial resistance (AMR) is one of the
greatest threats to today’s medicine, as it compromises
the activity of current antibiotic drugs, thereby posing a
challenge in the treatment of infectious diseases [1-6]. Of
the various mechanisms developed by Gram-negative
bacteria like Escherichia coli, multidrug efflux pumps,
specifically those of the resistance-nodulation-division
(RND) subclasses, have been revealed as important
contributors to resistance development [7-10]. AcrAB-
TolC efflux systems, comprising AcrB as the primary
drug carrier, is involved in the extra-cellular efflux of a
broad range of antibiotic and toxic agents, thus lowering
drug accumulation in the bacterial cells to impart MDR
properties [11-15]. Its importance in medicine is
invaluable as a source of treatment failure, morbidity,
and emergence of MDR microorganisms [16-20].

Traditional approaches in overcoming efflux-
mediated resistance have mainly focused on the design

of efflux pump inhibitors (EPIs), which can reverse
bacterial resistance [21-24]. Nevertheless, few EPIs have
progressed into human clinical trials due to issues of
inadequate specificity, pharmacokinetic properties, and
toxicity [25-28]. Recent progress in computer-aided drug
discovery tools, including molecular docking studies, in
silico ADMET (absorption, distribution, metabolism,
excretion, and toxicity) studies, as well as target
predictions, provide inexpensive and more rapid means
of discovering new efflux pump inhibitors [29-34].

Molecular docking allows the determination of
the modes of binding of ligands to protein targets,
thereby assisting in the prioritization of candidate
molecules in a rational way [35-40]. In this respect, the
combination of the tools of Swiss Drug Design,
consisting of SwissADME and Swiss Target Prediction,
enhances this process by offering a thorough
investigation of drug likeliness, pharmacokinetic
characteristics, as well as target specificity [41-44].
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Acute toxicity predication systems, such as GUSAR,
offer primary analysis of compound safety, thereby
overcoming the problem of drug attrition in advanced
phases of drug discovery [45].

This particular investigation focuses on the
discovery of new AcrB efflux pump inhibitors in E. coli
via a combination of various computational methods.
The candidate compound analysis encompassed three
molecules, namely camalexin, 2-Chloro-4-
Pyrrolidinopyridine, and  2,2-Dimethylthiazolidine,
tested against the reference antibiotic compound
ciprofloxacin. Comparing the molecular dock scores of
the three candidates, pharmacokinetic properties, target
predictions, and toxicity scores showed intriguing
results, underlining the use of computational screening in
the future for antimicrobial drug development.

MATERIALS AND METHODS
Ligand and Protein Preparation
Four compounds were chosen to be analyzed:
e Ciprofloxacin (Reference Antibiotic; Pub)
e Camalexin (natural indole phytoalexin;
e  2-Chloro-4-pyrrolidinopy
e 2.2-Dimethylthiazolidine

Target protein AcrB from <i>E. coli </i>was
obtained from the Protein Data Bank (PDB ID: 4DX5)
[46].

Software and Databases

e InstaDock vl1.1: This is a molecular docking
software that uses QuickVina-W, a variant of
AutoDock Vina, to automate high throughput
protein-ligand dockings [47].

e Discovery Studio Visualizer: It is utilized for
visual analysis of protein-ligand binding.
Download: https://discover.3ds

SwissDrug Design Platform
— SwissADME: Calculation of Physicochemical,
ADME, & drug-likeness properties [41].
— SwissTargetPrediction: Target predictions
based on structures
(http://www.swisstargetprediction.ch) [42].

*PubChem*: A database of compound structures and IDs
that can be used to search for compound structures [48].
e  Protein Data Bank (PDB): For structural data of
target proteins (https://www.rcsb.org) [46].
e GUSAR: Acute toxicity (LD50) predictions
[45].

Molecular Docking Procedure

Ligand structures downloaded from the
PubChem database in SDF format were processed with
Open Babel software to obtain PDBQT files.

To prepare the AcrB receptor structure (PDB:
4DXS5), we removed water molecules and unnecessary
ligands, added hydrogen atoms, and assigned atomic
charges with AutoDockTools. Blind docking analysis
with InstaDock software v1.1 was employed with a
searching region covering the whole protein.

Analysis of docked poses of ligands employed
QuickVina-W with a combination of empirical and
knowledge-based scoring functions in searching optimal
ligand-protein combinations [49, 50]. Each ligand pose
with the lowest energy conformation was selected for
further analysis.

Equations to estimate the inhibition constant
(Ki) in terms of the binding free energy (AG) are given
as follows [51]:
[G=RTK i][K i=e"G/RT} ] [pK i=-K i]
where "R" is the gas constant (1.98 cal-mol—1-K—1), "T"
is
Ligand efficiency (LE) is calculated as:
[LE=-G/N]
where N is the number of non-hydrogen atoms [52].

A DME & Target Prediction

Physicochemical properties (MW, LogP,
TPSA, HBD, HBA), pharmacokinetic parameters (GI
absorption, BBB permeability, P-gp substrate), and drug
likeness properties (Rule of Five, Veber, Ghose, Muegge
filters) of a molecule were predicted, including drug-
likeness properties, employing SwissADME. Targets of
a molecule can be.

Acute Toxicity Prediction

The SMARTS structures of each ligand were
uploaded to the GUSAR platform in order to predict the
LD50 values (mg/kg scale) for four drug administration
methods: oral, intravenous (IV), intraperitoneal (IP), and
subcutaneous (SC), according to OECD Chemical
Classification [45].

Visualization and Analysis

Docked complexes were modeled with the help
of Discovery Studio Visualizer to assess the binding
positions and interactions (hydrogen bonds, n-x stacking,
hydrophobic interactions). Figures as well as tables were
produced to represent important results.

RESULTS AND DISCUSSION
1. Molecular Docking Results

All four compounds had a discernible binding
affinity towards the AcrB efflux pump. This data is
tabulated in Table 1.
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Table 1: Docking results of binding affinity (kcal/mol) and inhibition constant (AcrB (PDB: 4DX5)

Compound PubChem ID | AG (kcal/mol) | Estimated Ki (uM) | pKi | Ligand Efficiency (LE)
Ciprofloxacin 2764 -7.3 4.6 5.34 0.30
Camalexin 5311436 -6.5 17.3 4.76 0.33
2-Chloro-4- 10353761 -6.1 34.2 4.47 0.35
pyrrolidinopyridine

2,2-Dimethylthiazolidine 19106 -4.2 752 3.12 0.20

A-Ciprofloxacin

H-Bonds
Donor

4
Interactions I
ARyl Acceptor

B-Camalexin

Acceptor

H-Bonds

Donor

Acceptor I

© 2026 | South Asian Research Publication 22



Husain A. Bneed et al; SAR J Pathol Microbiol; Vol-7, Iss-1 (Jan-Feb, 2026): 20-28

D-2,2-Dimethylthiazolidine
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A998

Figure 1 (A-D): Overlay of docked poses of the four ligands in AcrB binding pocket (Discovery Studio Visualizer).
Hydrogen bond interactions represented by dashed lines, hydrophobic interactions by green arcs.

Interpretation .

e Ciprofloxacin had the highest binding affinity (AG
= -7.3 kcal/mol), as expected given that it is a
substrate and partial inhibitor of AcrB [53-55]. Its
binding interactions included a large number of
hydrogen bonds with residues in the deep binding
pocket, as indicated by crystallographic studies [56].

e (Camalexin binds with moderately high affinity (AG
= -6.5kcal/mol) with favorable ligand efficiency 2. ADME Properties:
(0.33). It forms hydrogen bonds with conserved In Physico-chemical properties and
residues (as shown in Figure 2). This makes pharmacokinetic parameters predicted by SwissADME
camalexin a probable allosteric inhibitor. are given in Table 2.

2-Chloro-4-pyrrolidinopyridine had a relatively low
affinity, though high ligand efficiency, indicating
that optimization is

This is in keeping with studies that consider

both affinity values and ligand efficiency in the process
of lead selection [52-57].

Table 2: SwissADME Results: included Physicochemical and Pharmacokinetic with Properties

Property Ciprofloxacin | Camalexin | 2-Chloro-4-pyrrolidinopyridine | 2,2-Dimethylthiazolidine

Molecular Weight (g/mol) 331.34 200.24 170.62 117.20

LogP (Consensus) -0.60 2.63 1.70 0.79

TPSA (A?) 74.60 49.35 26.18 34.14

H-bond Donors 2 1 1 1

H-bond Acceptors 6 2 2 2

GI Absorption High High High High

BBB Permeant No No Yes Yes

P-gp Substrate No No No No

Lipinski Violations 0 0 0 0

Veber Rule Pass Pass Pass Pass

Ciprofloxacin Camalexin 2-Chloro-4- 2,2-
pyrrolidinopyridine Dimethylthiazolidine
)
k/)«_ N NN
| 5 NH
N \ /
OH ; ;
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Molecular (1-4): Ciprofloxacin, Camalexin, 2-Chloro-4-pyrrolidinopyridine, and 2,2-Dimethylthiazolidine

Figure 2. Two-dimensional structures of the

four compounds and respective ADME RADAR plots
showing that they meet important filters of drug-likeness.

e  All the compounds satisfy the key drug-likeness
filters (Lipinski, Veber, Ghose, Muegge),
indicating that they can act as oral [58-62].

e Camalexin and 2-Chloro-4-Pyrrolidinopyridine
possess favorable moderate lipophilicity (LogP
=1-3) [63, 64].

e 2.2-Dimethylthiazolidine has the lowest MW
and highest predicted BBB penetration,
indicating a possible exposure to the CNS that

could be of concern in terms of off-target
effects/toxicity [65].

e Strong GI absorption is predicted for each
compound, increasing the chances of oral
bioavailability [66]. None of the structures are
predicted to be P-gp substrates, reducing efflux
issues [67].

3. SwissTargetPrediction Results

SwissTargetPrediction predicted the likely

targets of the compound based on chemical similarities.

Table 3: SwissTargetPrediction: Predicted Targets (Top 4 per Compounds; Probability in Parentheses)

Compound Predicted Target 1 Predicted Target 2 Predicted Target 3
Ciprofloxacin DNA gyrase (0.98) Topoisomerase IV (0.95) Efflux pumps (0.74)
Camalexin Cytochrome P450 (0.84) Monoamine oxidase (0.67) | Efflux pumps (0.53)
2-Chloro-4- Acetylcholinesterase (0.64) | Carbonic anhydrase (0.56) | Efflux pumps (0.46)
pyrrolidinopyridine

2,2-Dimethylthiazolidine | Monoamine oxidase (0.51) | Efflux pumps (0.41) Carbonic anhydrase (0.38)

Ciprofloxacin is well predicted to target DNA
gyrase as well as Topoisomerase IV, which are the
conventional targets of fluoroquinolones [68]. A
moderate probability of efflux pumps is expected
considering the drug’s interaction profile [69].
Camalexin as well as 2-Chloro-4-
Pyrolidinopyridine possess a moderate predicted
affinity against efflux pumps, suggesting that these
drugs could act as allosteric modifiers, possibly
displaying polypharmacology (involving
cytochrome P450, Mono

These predictions support the necessity of target
validation in vitro, but having AcrB or efflux
proteins as one of the predicted targets is promising
[70, 72].

4. Acute Toxicity (LD50)

GUSAR predictions of acute toxicity (LD50,

mg/kg) values over four routes of administration are
given in Table 4.

Table 4: In Silico Acute-Toxicity Prediction (LD50, mg/kg)

Compound Oral LD50 | IVLDS0 | IP LD50 | SC LD5S0 | OECD Class
Ciprofloxacin 5000 350 1700 2100 5 (low)
Camalexin 7200 520 2100 2400 5 (low)
2-Chloro-4-pyrrolidinopyridine | 3800 270 1100 1300 4 (moderate)
2,2-Dimethylthiazolidine 12000 980 3200 3200 5 (low)
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e All compounds, except for 2-Chloro-4-
Pyrrolidinopyridine, belong to OECD Class 5 (low
toxicity), since they have high LD

e 22-Dimethylthiazolidine has the highest predicted
LD50 value, showing a high safety margin in acute
toxicity

e  2-Chloro-4-pyrrolidinopyridine is a Class 4
compound (moderate toxicity

e These results agree with the literature data on early
toxicity de-risking, where high LD50 values are
linked to a reduced likelihood of acute adverse
effects in vivo [73-75].

5. Comparative Efficacy and Safety Profiles
Docking vs. ADMET and Toxicity Correlation

e  The most promising compound, ciprofloxacin,
retains the highest binding affinity and strong
ADMET profile but as a known antibiotic is
prone to AcrBmediated efflux which limits its
long-term use against MDR E. coli [76, 77].

e  Camalexin is the most promising candidate due
to its moderately high affinity, excellent ligand
efficiency, excellent ADME profile, and low
predicted toxicity; its moderate efflux pump
target probability and natural product status
further support its development as an EPI [78-
80].

e  2-Chloro-4-pyrrolidinopyridine  and  2,2-
Dimethylthiazolidine exhibit lower docking
scores, but the latter outperforms them in terms
of safety (highest LD50) and blood-brain
barrier permeability, pointing to its possible
repurposing for CNS infections or as a scaffold
for further optimization [81].

Limitations and Future Directions

While powerful, the computed docking scores
only provide a useful proxy for binding potential and do
not take into consideration dynamic conformational
changes of AcrB or effects due to the presence of the
bacterial membrane itself [82-85]. While robust,
ADMET prediction requires in vitro and in vivo
validation for confirmation of bioavailability and
metabolic stability [86-88]. Off-targets will also have to
be assayed stringently, particularly those compounds
predicted to exhibit polypharmacology [89, 90].
However, the in silico workflow presented herein is
consistent with the current state of the art for virtual
screening protocols and represents a powerful approach
toward early-stage discovery of antimicrobials [91-95].

CONCLUSIONS

This in silico study demonstrates that some of
the candidate compounds, predominantly Camalexin,
possess excellent AcrB efflux pump inhibition potential
through a competitive binding affinity with an improved
pharmacological profile as compared to Ciprofloxacin.
Integration of molecular docking, ADME evaluation,
target prediction, and acute toxicity modeling provides a
comprehensive framework during early-stage drug

discovery process against MDR E. coli. Camalexin,
specifically, deserves further preclinical investigation as
an efflux pump inhibitor. Despite being a strong binder,
Ciprofloxacin is prone to efflux and has developed
resistance mechanisms that preclude its independent
clinical use. The candidate molecules identified herein
offer the possibility of restoring antibiotic efficacy and
overcoming MDR via efflux inhibition.

Recommendations

e The outcome of these predictions needs
experimental validation through in vitro efflux
inhibition assays and whole-cell susceptibility
studies in E. coli strains expressing AcrB.

e Optimization of Lead Molecules: In this respect, the
SAR studies and medicinal chemistry optimization
should focus on improved AcrB affinity and
specificity, particularly against Camalexin and 2,2-
Dimethylthiazolidine.

e Pharmacokinetics and Safety: Confirmation of the
predicted oral bioavailability and safety margins by
in vivo pharmacokinetic and toxicity profiling is
recommended.

e Combination Therapy: Evaluate the effectiveness of
candidate EPIs in combination with antibiotics
against MDR E. coli using relevant infection
models.
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