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Abstract: This review article examines the integration of Artificial Intelligence (AI) in Sequential Batch Reactors 

(SBRs) to enhance operational efficiency in wastewater treatment. SBRs facilitate the treatment process through distinct 

phases—fill, react, settle, and decant—within a single tank. The transitions between these phases are pivotal for optimizing 

treatment performance. Traditional control strategies often rely on manual interventions and fixed schedules, which may 

lead to inefficiencies and suboptimal outcomes. AI technologies, including machine learning and predictive analytics, 

present a transformative opportunity to improve operational management by enabling real-time monitoring, adaptive 

control, and predictive maintenance. This article discusses various AI applications in SBR systems, highlighting their 

potential to enhance treatment efficiency, reduce energy use, and improve effluent quality. Furthermore, it addresses the 

challenges and future directions of implementing AI within wastewater treatment frameworks, emphasizing the need for 

continued innovation to meet evolving environmental standards. Through a comprehensive analysis, this review 

underscores the role of AI in revolutionizing wastewater treatment processes, paving the way for more sustainable and 

efficient practices in the management of water resources. 

Keywords: Artificial Intelligence, Sequential Batch Reactor, Wastewater Treatment, Operational Efficiency, 

Predictive Maintenance, Machine Learning. 

 

1.0 INTRODUCTION 
The SBR process traces back to 1914, when Ardern and Lockett introduced indirect aeration techniques to the 

activated sludge method (Luo 2018). 

 

Sequencing Batch Reactor (SBR) process, a sewage treatment technology emerged as an improvement over the 

conventional activated sludge treatment process. Due to the increasing need for effective sewage treatment driven by 

economic growth and rising living standards, SBR has gained popularity since the 21st century, particularly with 

advancements in automatic control technology (Jing, Wei-Li, and Fu-Chuan 2021). 

 

The complete operational process of a Sequencing Batch Reactor (SBR) can be segmented into five distinct stages. 

The first stage, the fill phase, involves adding influent wastewater to the reactor. At this point, pre-aeration or agitation 

may be employed to facilitate semi-aeration, which leads into the subsequent aeration phase where microorganisms actively 

decompose organic contaminants. Following aeration, the process enters the sedimentation phase, during which both the 

agitation and aeration are halted, allowing for the separation of solids from liquids as sludge settles at the bottom. This 

phase is characterized by a completely static environment within the reactor, akin to secondary settling. After 

sedimentation, the drainage phase occurs, where the treated water is removed via a designated drainage pipe or decanter. 
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Excess sludge is expelled through a dedicated sludge discharge pipe, while a portion can be retained for use as return sludge 

in the next operational cycle. The final stage is the idle phase, which serves as a transition, preparing for the next cycle. 

During this idle period, the discharged sludge may either be eliminated or undergo further static sedimentation. It’s worth 

noting that the idle phase might be omitted entirely. Oxygen supply is critical as it influences the rate of organic material 

degradation, and enhancing aerobic conditions reduces organic matter concentration (Jing, Wei-Li, and Fu-Chuan 2021). 

 

SBRs operate normally on a fixed switching schedule about some safety factors for probable inaccuracies, making 

operations highly inefficient (Marsili-Libelli 2006). 

 

Certain advancements in the SBR development process concentrate specifically on the procedural aspects. Over 

the years, various deformation methods have emerged, enhancing the fundamental SBR process. These include techniques 

like the ICEAS process, CASS process, and casting process, among others. In their research, Gu Wei and Yuan Yajing 

applied the DAT-IAT Process for the treatment of pharmaceutical wastewater. Their findings indicate that, in comparison 

to conventional SBR technology, the DA-TIAT method offers a greater aeration volume ratio and requires fewer blowers, 

thereby lowering overall equipment costs (Jing, Wei-Li, and Fu-Chuan 2021). 

 

Yang and colleagues investigate various SBR process variants, including ICEAS, CASS, DAT-IAT, and SBBR, 

each tailored for specific wastewater characteristics. They found that despite advances in SBR technology, it still faces 

challenges such as long treatment cycles and the need for improved automation. The authors suggest that further 

development and investment in SBR technology are essential for effectively addressing sewage treatment issues, especially 

in China, where the technology has already seen significant application. Overall, the article emphasizes the importance of 

continuous innovation in SBR technology to meet modern environmental standards and improve the efficiency of sewage 

treatment processes (Jing, Wei-Li, and Fu-Chuan 2021). 

 

SBR is an evolving sewage treatment technology that requires ongoing updates and enhancements to its associated 

management systems and approaches. Traditional SBR methods face several challenges, including lengthy treatment 

durations, frequent changes in inflow and outflow, stringent automation requirements, and significant fluctuations in water 

levels. There remains considerable potential for optimizing operational adjustments in this area. 

 

The most common drawbacks in operating SBR systems that require operators’ attention are listed below. 

DO Control: Operating DO at a set point for ON/OFF aeration is most common practice in SBR Plants. These 

set points are based on plant operation experience and judgments. However, proper attention needs to be taken to 

evaluate these set points from time to time based on process operation performance and effluent quality. Failing 

to do so may lead to higher operational and maintenance costs or exceed effluent target limits. Although the 

sequencing of an SBR occurs quite slowly and is not difficult to carry out manually, it requires an operator to be 

at the plant 24 hours/day and to be constantly aware of process status. 

Scum Management: Removing scum in SBRs can be challenging; effective decanting mechanisms are crucial to 

prevent scum from entering downstream processes (de Silva 2003). 

Wastewater Discharge Level: The level of wastewater discharge is usually maintained above the settleable solids 

to avoid disturbing the sludge and causing it to float to the surface. An increase in the Sludge Volume Index (SVI) 

corresponds with a rise in the settleable solids, which in turn reduces the volume of wastewater that can be 

released. Therefore, effective management of the decanter is crucial, requiring careful observation of the sludge 

settling behavior to optimize both the settling and discharge processes. However, there have been no documented 

cases of monitoring the settling properties of activated sludge and automatically adjusting the decanter according 

to the suspended solids concentration in the wastewater. (Kwon et al. 2023). 

 

Recently, the incorporation of artificial intelligence (AI) in wastewater management has become a prominent area 

that has the potential to transform our approach to addressing environmental issues. With the rise in global population and 

the rapid pace of industrial and urban development, there is a pressing demand for efficient and sustainable solutions in 

wastewater treatment. (Ahmad et al. 2022). 

 

Specifically, artificial intelligence techniques are utilized for overseeing and designing intricate non-linear real-

world issues like wastewater treatment systems (WWTS). Nonetheless, given the intricate nature of biological processes, 

there is still a significant lack of evidence-based research regarding WWTS. Artificial Intelligence, which includes machine 

learning, neural networks, and various computational techniques, enables us to examine large datasets, enhance process 

parameters, and forecast results in real-time (Y. Wang et al. 2023). 

 

The findings suggest that currently, AI is mostly employed to assess the elimination of pollutants—both 

conventional and emerging—as well as to enhance models and process parameters. This research offers significant 
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perspectives on the potential opportunities and challenges faced by scientists utilizing AI in wastewater treatment (Zhang 

et al. 2023). 

 

Incorporating AI technologies presents a novel approach to tackling these challenges by enhancing the efficiency, 

precision, and automation of wastewater treatment procedures. Through the application of machine learning algorithms, 

predictive modeling techniques, and advanced data analysis, AI has the potential to greatly enhance multiple facets of 

wastewater management (Obaideen et al. 2022). 

 

Summary of Artificial Intelligent in Sequencing Batch Reactor 

Statistical Models: 

These models use statistical methods to analyze historical data and predict future outcomes. Common statistical 

techniques include regression analysis, where relationships between different variables (such as contaminant concentration 

and microbial activity) are explored. Statistical models can provide insights into the expected performance of 

bioremediation efforts under various conditions. 

 

Machine Learning Models: 

Rodríguez-Rángel and colleagues found that machine learning techniques, including decision trees, random 

forests, and neural networks, are being increasingly applied in the field of bioremediation. These algorithms can identify 

intricate relationships within data without the need for direct coding. For example, a neural network can be trained using 

past data to identify patterns linked to effective bioremediation efforts, facilitating immediate predictions and 

recommendations. 

 

AI can further refine this by continuously analyzing real-time data to adjust cycle times dynamically based on 

varying influent characteristics and operational conditions. Machine learning algorithms could predict the most efficient 

operational parameters based on historical data and current conditions, potentially identifying even shorter or longer cycles 

that might yield better results under different scenarios. 

 

Artificial intelligence encompasses a field dedicated to utilizing data and algorithms to replicate human learning 

processes, enhancing accuracy over time; this area is referred to as machine learning. These algorithms are employed in 

various applications, including fault detection, object classification, control systems, diagnostics, and predictive analytics 

(Rodríguez-Rángel et al. 2022).  

 

As the process shifts from the fill phase to aeration, the timing and intensity of aeration play a crucial role. 

Artificial Intelligence can analyze real-time data to identify the best time to start aeration, ensuring that conditions are ideal 

for microbial activity. For instance, if the influent is rich in organic matter, the AI system can extend the aeration period to 

enhance treatment. Furthermore, after aeration, the sedimentation phase is crucial for separating solids from the treated 

effluent. AI can optimize this phase by controlling the duration and conditions under which sedimentation occurs. By 

analyzing data on solid concentration and settling rates, the AI system can predict the best time to commence decanting, 

thereby improving effluent quality and reducing the need for additional treatment processes. 

 

Dynamic Simulation Models: 

The control strategy employs real-time monitoring of parameters such as pH, temperature, dissolved oxygen (Do), 

oxidation-reduction potential (ORP), and oxygen uptake rate (OUR) to identify the completion of key biological processes, 

including ni-trification and denitrification (Kwon et al. 2023). 

 

In the field of wastewater treatment, there has been significant research into the application of artificial intelligence 

(AI) and machine learning (ML) techniques. By combining AI models with traditional methods and Internet of Things 

(IoT) frameworks, the design of intelligent wastewater treatment systems can be significantly improved, facilitating 

effective reuse. AI models are recognized as robust tools for predicting, modeling, and optimizing various processes 

involved in wastewater treatment. Their applications span a wide range of areas, including the removal of color, heavy 

metals, organic compounds, solids, microbial contaminants, pharmaceuticals, nutrients, and pesticides from water 

(Mazloom et al. 2020). 

 

Internet of Technology  

The introduction of IoT technology provided real-time monitoring of nutrient concentrations, enabling automatic 

adjustments to the SBR operation based on fluctuating inflow conditions. This approach not only improved treatment 

efficiency but also facilitated better control of the biological processes involved in nitrogen removal. 
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This article provides an in-depth exploration of the latest uses of various AI models in wastewater treatment, 

focusing on areas such as pollutant removal, real-time monitoring of parameters that reflect effluent quality, and fault 

detection in sequencing batch reactor (SBR) operations. (Kwon et al. 2023). 

 

Publication of AI in wastewater treatment  

The yearly trends in A1-related publications within the wastewater treatment sector, as depicted in Figure 1, 

provide valuable insights into the evolution and trends of research in this area over the last ten years. The data shows a 

consistent upward trajectory, indicating an interest in the use of A1 in wastewater treatment studies (Baarimah et al. 2024). 

 

 
Figure 1: Yearly publications concerning artificial intelligence in wastewater treatment, according to Scopus 

data (up to April 2024) 

 

In a study by Nagpal et al. a range of individual models, such as support vector machines (SVMs), artificial neural 

networks (ANNs), genetic algorithms (GAs), fuzzy logic (FL), and decision trees (DTs), have been utilized for processes 

modeling in wastewater treatment plants. Additionally, hybrid approaches are used, which involve integrating two distinct 

models, either in a sequential or parallel manner, to achieve greater accuracy than the separate models, as well as more 

complex structures like models (Nagpal et al. 2024).  

 

Real-life WWCE using AI for operation 

Several wastewater treatment plants around the world have begun incorporating artificial intelligence (AI) technologies to 

enhance their operations. Some notable examples include: 

Chicago, Illinois, USA: The Water Reclamation District has been utilizing AI to optimize operations and reduce 

energy consumption at its wastewater treatment facilities. 

Singapore: The Changi Water Reclamation Plant has implemented AI and machine learning to enhance process 

control and predictive maintenance, improving overall efficiency in treating wastewater. 

Barcelona, Spain: The city's wastewater treatment facilities have integrated AI systems to monitor and manage 

processes more effectively, leading to enhancements in energy savings and operational efficiency. 

Amsterdam, Netherlands: The city's wastewater treatment plants have adopted AI for various applications, 

including optimizing treatment processes and predictive maintenance. 

Los Angeles, California, USA: The Hyperion Water Reclamation Plant has started using AI technologies to 

improve its operational efficiency and reduce energy consumption. 

Melbourne, Australia: The Western Treatment Plant is utilizing AI for process optimization and predictive 

maintenance to enhance the reliability of its operations. 

 

2.0 LITERATURE REVIEW 
To regulate dissolved oxygen levels within the SBR, three control strategies have been identified: proportional 

integral (PI), fractional proportional integral (FPI), and fuzzy logic controllers. Control algorithms were created utilizing 

plant data, coupled with SBR and SSBR models based on the ASM2d framework. In a comparative analysis, the FPI 

controller exhibited a significant decrease in nutrient levels and improved effluent quality, achieving a 0.86% enhancement 

over the PI controller. The SSBR is designed to optimize nutrient delivery and aeration, striking a careful balance that 

reduces oxygen demand while maintaining vital biological processes. Notably, in assessing the FPI controller's efficiency 

concerning total air volume consumption, the step-feed SBR method achieved an impressive reduction of 11.04%. A pilot-
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scale SBR was operated with 6-hour cycles encompassing anoxic, anaerobic, and oxic phases. Figure 2 illustrates the 

conventional and modified operational cycle of the SBR (Dey et al. 2024). 

 

 
Figure 2: Conventional SBR operation phases versus modified SBR operation phases (SSBR) 

 

A model was developed by Heo and his colleagues to simulate the Partial Nitritation (PN) process in a full-scale 

Sequencing Batch Reactor (SBR), acting as a predictive tool to assess various influencing factors. The model was calibrated 

using AI techniques to optimize levels of ammonium (NH4), nitrite (NO2), and nitrate (NO3) by fine-tuning parameters 

with real-time data. Sensitivity analysis identified key biological parameters affecting the PN process, allowing for targeted 

control. Additionally, an AI-based strategy called AI-OpAS was created to optimize aeration, balancing oxygen needs with 

energy efficiency, achieving a NO2/NH4 ratio of 1.1 while saving up to 31.38% in energy (Heo et al. 2023). 

 

The integration of Internet of Things (IoT) technology into the sequencing batch reactor (SBR) system was aimed 

at improving nitrogen removal and tackling challenges associated with fluctuating inflow rates. To manage these variations, 

an automatic mechanical decanter was created, which optimizes the settling and discharge time (TRSD) by observing both 

the sludge-blanket height and the suspended solids concentration. This advancement allowed for a significant reduction in 

average TRSD to just 1 hour, achieving a decrease of 27-59% in comparison with conventional SBR techniques used for 

domestic wastewater treatment. The system enhanced performance by increasing the bio-reaction time while maintaining 

the total cycle time. The nitrogen removal efficiency was further improved through a two-step influent introduction process, 

utilizing an 8:2 ratio, which yielded a total nitrogen removal rate of 92-93% for the step-feed approach, in contrast to 82-

88% for the single-feed method. Despite a 51-minute increase in bio-reaction time during the step-feed mode at 

temperatures ranging from 13-16 °C, the overall cycle time was kept below 6 hours thanks to the shorter TRSD. The 

adoption of IoT technology facilitated more dependable SBR operations and significantly boosted total nitrogen removal 

efficiency (Kwon et al. 2023). 

 

Zhou and his team introduced an enhanced version of multi-way principal component analysis (MPCA) to tackle 

the challenge of diagnosing faults in actuators over multiple periods within a sequencing batch reactor (SBR). Their study 

focused on identifying faults in the SBR process used for treating wastewater in a papermaking facility. Data was gathered 

from the paper mill, including metrics such as blower current, SBR reactor levels, dissolved oxygen (DO) in the wastewater, 

and the opening of the blower valve. For analysis, the data from three complete batches of the SBR process were divided 

into seven segments, reflecting the cyclical nature of the operation illustrated in Figure 3. This segmentation helps reduce 

the effects of interference and interactions between faults occurring at different times. The findings affirm the effectiveness 

and reliability of the proposed MPCA method. Figure 3 shows the SBR process and SBR cycle in the Guangzhou paper 

mill (Zhou et al. 2021). 

 

 
(a)       (b) 

Figure 3: (a) SBR process and (b) SBR cycle in Guangzhou paper mill 
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To enhance wastewater treatment efficiency, pattern recognition technology was employed to determine the 

process switching points using pH and DO measurements. DO and oxidation-reduction potential (ORP) were suggested as 

control parameters in the process, demonstrating consistent trends that could stabilize the process. The effluent 

concentration of ammonium was maintained below 2 mg/L, achieving a removal efficiency of 97% and a nitrite 

accumulation rate of 98% (S. Li et al. 2021). 

 

Salari and et al. conducted an assessment of a Sequencing Batch Reactor in petrochemical wastewater treatment, 

with the goal of determining the optimal cycle duration for effective processing. The SBR operated in an aerobic suspended 

biomass configuration, monitoring essential parameters such as pH, temperature, and dissolved oxygen throughout the 

treatment. The study concluded that a 7-hour cycle, comprising a 15-minute filling phase, a 6-hour reaction period, 30 

minutes for settling, and a 15-minute withdrawal, delivered the best results. Testing under various organic loading rates 

(12.88, 18.02, and 31.39 g COD/L.d) revealed maximum removal efficiencies of 84% for Chemical Oxygen Demand 

(COD), 67% for Total Solids (TS), and 92% for Total Suspended Solids (TSS). The optimal aeration duration was identified 

as 6 hours, beyond which efficiency improvements were minimal but energy costs escalated significantly (Salari, Ataei, 

and Bakhtiyari 2017). 

 

The performance of SBR wastewater treatment systems in cheese manufacturing facilities was also evaluated, as 

the waste generated is typically high-strength and exhibits an intermittent nature due to cheese production, making it well-

suited for SBR treatment. The SBRs were tested with two filling strategies: React Fill (RF), which included mixing and 

aeration, and Static Fill (SF), which lacked these features. Results indicated that the SF method outperformed RF, leading 

to a 50% increase in polyhydroxybutyrate (PHB) production and a 15% increase in glycogen production (Ranieri, Goffredo, 

and Schroeder 2011). 

 

Aguado and et al. analyzed data from a P-removal SBR. They discussed the use of Kohonen Self-Organizing 

Maps (SOM) and Principal Component Analysis (PCA) to analyze and interpret multidimensional data from a biological 

wastewater treatment process aimed at enhanced biological phosphorus removal (EBPR). They describe the operation of a 

sequencing batch reactor, designed to facilitate EBPR, detailing the reactor's cycles and the types of data collected. It was 

concluded that both methodologies provide powerful tools for extracting relevant information from high-dimensional data 

sets, facilitating diagnosis and process optimization in wastewater treatment operations (Aguado et al. 2008). 

 

Improving the performance of a continuous-inflow sequencing batch reactor (SBR) using a real-time control 

system that monitors-oxidation reduction potential (ORP) and pH levels. The study found that the real-time controlled SBR 

surpassed conventional systems in substrate removal efficiency and cost-effectiveness, achieving a total nitrogen removal 

efficiency of 91%, compared to 81% for sequential control. It also demonstrated higher removal rates for chemical oxygen 

demand (COD), total Kjeldahl nitrogen (TKN), and ammonia (NH4) at 93%, 89%, and 91%, respectively. Additionally, 

the real-time control system led to a 14-32% reduction in aeration energy and an 11-29% decrease in reactor capacity 

needs, resulting in lower operational costs (Marsili-Libelli 2006). 

 

Marsili-Libelli et al. suggested approaching managing timing through an inference process that utilizes indirect 

indicators such as pH, ORP, and DO. These indicators provide insights into the process's condition, using a fuzzy clustering 

algorithm to determine when each phase is nearing completion. Experimental findings indicate that this method can 

significantly reduce the duration of treatment cycles, allowing for the processing of larger volumes of wastewater. Although 

no settling issues were observed during the experiments, the duration was too brief to dismiss potential sludge-related 

effects, and it remains uncertain whether prolonged operation could influence settling characteristics. While the results for 

phase-length management were promising, further exploration is needed in several areas. The established hard time limit 

may prove insufficient in cases of overload, and additional fuzzy rules might be necessary to adjust to varying operational 

conditions. Moreover, effective initial cluster training and the incorporation of problematic data are vital, as they enhance 

the controller's understanding and ability to identify unusual scenarios, enabling it to implement a robust defensive strategy 

(Marsili-Libelli 2006). 

 

Casellas presents a control strategy for improving nitrogen and phosphorus removal in a Sequencing Batch 

Reactor (SBR) by utilizing real-time monitoring of pH, oxidation-reduction potential (ORP), and oxygen uptake rate 

(OUR). This allows for dynamic adjustments to reaction phases, enhancing efficiency and reducing energy consumption. 

Experiments showed that the optimized strategy outperformed a fixed 24-hour cycle, achieving pollutant removal 

efficiencies of 94% for carbon, 96% for nitrogen, and 88% for phosphorus. The new approach reduced treatment time by 

45% and aeration time by 50%, resulting in significant energy savings and adaptability to varying wastewater loads. The 

study concludes that this strategy effectively optimizes nutrient removal in SBR systems, meeting regulatory standards 

while lowering operational costs (Casellas, Dagot, and Baudu 2006).  
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Corominas et al. investigate enhancing Sequencing Batch Reactors (SBRs) for wastewater treatment by using 

model-based evaluations of an online control strategy that utilizes Oxygen Uptake Rate (OUR) and Oxidation-Reduction 

Potential (ORP) measurements. This approach addresses stricter effluent regulations and aims to reduce treatment costs. 

Employing a calibrated ASM1 model, the study compared SBR performance with and without control strategies, focusing 

on effluent quality, aeration energy needs, and treated wastewater volume. Results showed that an online control strategy 

optimizing aerobic and anoxic phase durations significantly improved effluent quality and reduced aeration energy by up 

to 35%. The model-based method allows testing various control strategies without extensive experiments, potentially 

enhancing SBR efficiency. However, the authors emphasize the need for careful monitoring of microbial communities to 

ensure model predictions remain valid. Future real-world implementation is necessary to confirm the model's effectiveness 

(Corominas et al. 2006). Table 1 provides a summary of articles that focus on the application of AI in SBR. 

 

Table 1: Summary of article related to applying AI in SBR 

Researcher Method Finding 

(Dey et al. 2024) Advanced control strategies FPI controller improved nutrient levels, 11.04% 

reduction in air volume usage, enhanced effluent 

quality 

(Heo et al. 2023)  Mathematical modeling and AI-based 

optimization 

Developed a PN model, optimized NH4, NO2, NO3 

levels, saved 31.38% energy with AI-OpAS strategy 

(Kwon et al. 2023) IoT integration with automatic 

mechanical decanter 

-Reduced Time for Settling and Discharging 

(TRSD) to 1 hour (27-59% reduction), improved 

nitrogen removal to 92-93% using the step-feed 

method. 

(Zhou et al. 2021)  Multi-way principal component analysis 

(MPCA) 

Developed fault diagnosis method for SBR in paper 

mill, demonstrating viability and reliability of 

MPCA technique. 

(S. Li et al. 2021) A real-time management approach 

utilizing Dissolved Oxygen (DO) and 

Oxidation-Reduction Potential (ORP 

Maintained N-NH4+ < 2 mg/L with 97% removal 

efficiency, and 98% nitrite accumulation rate. 

(Salari, Ataei, and 

Bakhtiyari 2017) 

Performance evaluation of SBR for 

petrochemical wastewater 

Optimal 7-hour cycle time, reaching to maximum 

removal efficiencies of 84% COD, 67% TS, and 

92% TSS, improvement in aeration.  

(Ranieri, Goffredo, 

and Schroeder 

2011) 

Comparison of 'React Fill' and 'Static 

Fill' methods 

'Static Fill' outperformed 'React Fill' in storage 

products production for cheese factory wastewater 

with high- strength properties.  

(Aguado et al. 

2008) 

 

SOM and PCA for data analysis Effective in diagnosing and optimizing EBPR 

processes in SBR, enhancing phosphor treatment 

efficiency. 

(Marsili-Libelli 

2006) 

Real-time control system of pH, ORP, 

and DO 

Achieved 91% nitrogen removal efficiency, 14-32% 

reduction in aeration energy, and improved 

substrate removal. 

(Casellas, Dagot, 

and Baudu 2006) 

Real-time monitoring and dynamic 

adjustments by controlling pH, ORP, 

and OUR 

Achieved pollutant removal efficiencies of 94% for 

carbon, 96% for nitrogen, and 88% for phosphorus, 

reduced treatment time by 45%. 

(Corominas et al. 

2006) 

Model-based online control strategy Improved effluent quality, and reduced aeration 

energy by 35% through OUR and ORP 

optimization. 

 

3.0 AI Application in Sequencing Batch Reactor  

The SBR tank can serve many functions in treating wastewater if the operation and cycle time has been optimized correctly. 

 

• Equalization 

Many WWTPs require equalization tanks due to organic and hydraulic shock from influent, the designer set an 

equalization tank before the SBR tank to reduce these shocks. The application of small-scale treatment systems can be 

beneficial for industrial wastewater management and in small communities, particularly where conventional sewer 

infrastructure is lacking. These systems can adapt to both daily fluctuations and seasonal variations in wastewater 

characteristics (Metcalf, Eddy, and Tchobanoglous 1991). By leveraging artificial intelligence (AI), adjustments to system 

configurations and operational strategies in Sequencing Batch Reactors (SBR) can be seamlessly implemented. For 

instance, in Dakar, where only 24% of residents are connected to a sewage treatment facility, small treatment systems could 

effectively address sanitation challenges. The experimental approach employed an automated SBR treatment system, 

demonstrating adaptability to varying wastewater flow rates (Barsan et al. 2017). 
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Furthermore, when treated wastewater from smaller plants is directed to a larger SBR-operated facility, it’s 

essential to optimize operational cycles to manage fluctuations in inflow. AI-driven models can be created to forecast 

reactor performance under different loading conditions, allowing operators to proactively modify their operational 

approaches or enhance pre-treatment processes before the wastewater enters the SBR (Kwon et al. 2023).  

 

The SBR system offers considerable operational flexibility, including internal equalization. The duration of idle 

periods can be adjusted based on influent flow rates and operational strategies, facilitating equalization during these 

intervals. 

 

• Selector  

Regarding sludge management, a phenomenon known as sludge bulking occurs when excessive suspended solids 

in the effluent diminish the efficiency of treatment plants (Salari, Ataei, and Bakhtiyari 2017). This issue can arise from 

operational conditions such as low dissolved oxygen levels, low food-to-microorganism (F/M) ratios, and fully mixed 

operations, increasing filamentous bacteria that do not settle well. To mitigate this, bioreactors, often referred to as bio-

selectors or selectors, are integrated into the SBR process. These systems are specifically designed to promote the growth 

of floc-forming heterotrophic bacteria over filamentous species (Zhao et al. 2016). In SBR operations, the activated sludge 

is returned to a floc-forming unit, where it is combined with incoming wastewater in a designated selection zone, a process 

that can also be enhanced through the use of AI. 

 

• Reducing the effect of design assumptions  

Change of design assumption in real wastewater treatment plant and need to adapt with the real conditions such 

as change in influent characteristics prediction or weather condition. 

 

Table 2 outlines the standard design parameters for sequential batch reactors (SBR) that are commonly utilized 

by designers. However, these assumptions may not reflect real-world conditions and can change as new information 

becomes available. 

 

Table 2: Typical design criteria parameter of SBR (Metcalf, Eddy, and Tchobanoglous 1991) 

SRT, d F/M, kg BOD/ 

kg MLVSS•d 

Volumetric loading, 

kg BOD/m3. d 

MLSS, mg/L Total hydraulic 

retention time, d 

15-30 0.04-0.1 0.1-0.3 2000-5000 15-40 

 

Research by Zhao and his team investigated how varying salinity levels (ranging from 0 to 3% w/w) influenced 

the performance of microbes in a sequential batch reactor (SBR). The results indicated that the best biological nutrient 

removal occurred in the absence of salinity. Various studies on saline wastewater have shown that higher salinity 

concentrations lead to a reduction in oxygen transfer rates (OTR), which in turn negatively influences the activated sludge 

microbial communities (Zhao et al. 2016). 

 

Improve operational conditions in the initial years 

Operating a Sequencing Batch Reactor (SBR) during its initial years, especially when the influent is lower than 

the design capacity, requires careful management to ensure efficient treatment and system stability. For adjusting 

operational parameters with lower influent flows, it may be necessary to adjust the operational cycles to optimize treatment 

efficiency. 

 

Predictive Maintenance: 

AI can also enhance the maintenance of SBR systems by predicting equipment failures through data analytics. By 

analyzing patterns in operational data, AI can forecast when maintenance is needed, reducing downtime and ensuring 

consistent treatment performance.  

 

Sludge bulking is a significant challenge faced by more than 50% of wastewater treatment plants (WWTPs) 

utilizing the activated sludge process (ASP). This problem primarily arises from the excessive proliferation of filamentous 

bacteria. The occurrence of sludge bulking hampers the efficient separation of activated sludge, leading to the loss of solid 

materials in the treated effluent. Consequently, this situation not only escalates operational expenses but also diminishes 

the overall effectiveness of the treatment facility (Liu et al. 2016). 

 

In a study by Yao, implementing a 30-minute anaerobic stirring phase after the inflow of wastewater into a 

sequencing batch reactor (SBR) system significantly reduced sludge bulking within just 10 cycles. The sludge volume 

index (SVI) decreased notably from 222 to 74 mL·g−1. Additionally, high-throughput sequencing results revealed that this 

anaerobic phase effectively inhibited the growth of filamentous bacteria, which improved sludge concentration and 

promoted the settling of activated sludge (Yao JunQin et al. 2019). 
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Resiliency Improvement 

Resilience refers to a wastewater system's ability to foresee, endure, bounce back from, and adapt to various 

challenges posed by climate change and other occurrences. It is also recognized as an ongoing process that seeks to find a 

balance between risks and resources, leading to the development of flexible and innovative strategies for anticipating, 

managing, responding to, recovering from, and adjusting to events either before or after they occur (Asghari et al. 2023). 

 

AI-operated SBR systems can offer greater flexibility in scaling operations up or down based on real-time 

demands and influent characteristics. This adaptability is particularly useful in industries like petrochemicals, where 

wastewater composition can vary significantly. 

 

Energy Efficiency and Sustainability 

Enhancing energy efficiency and sustainability in wastewater treatment presents significant opportunities for 

optimization through AI, given the substantial energy demands of these processes. 

 

The research indicated that while longer aeration times improved treatment efficiency, they also increased energy 

costs. AI can help find the right balance between energy consumption and treatment efficacy by analyzing energy usage 

patterns alongside treatment outcomes, potentially suggesting more energy-efficient operational protocols. 

 

Research conducted by Ku and associates emphasizes the ability of AI to optimize the performance of wastewater 

treatment systems, increase their resilience, and lower operational expenses. The study indicates that AI methodologies 

could be utilized to manage various other factors, thereby fostering more sustainable operations in Sequencing Batch 

Reactors (SBR) (Heo et al. 2023). 

 

The overall design and functionality can include the capability to share mechanical equipment among the reactors 

to minimize the need for extra equipment for instance, blowers can alternate between reactor modules. 

 

Qua et al. conducted an analysis focusing on the economic implications of Sequencing Batch Reactors (SBRs) for 

municipal wastewater treatment in developing nations. This analysis was performed using the Environmental Protection 

Agency's (EPA) computer- assisted tool, as illustrated in Figure 4. 

 

 
Figure 4: Economic aspects associated with Sequencing Batch Reactors (SBRs) in developing countries 

 

The graph illustrates that a significant proportion of the SBR treatment systems’ costs are attributed to operational 

and maintenance expenses, independent of the capacity of the wastewater treatment facility (Quan and Gogina 2021). 

Consequently, implementing effective operational strategies is essential for minimizing expenses. 

 

Other benefits  

Additionally, AI can play a significant role in effectively addressing the following challenges in SBR wastewater 

treatment systems. 

- Impacts of climate change. 

- Presence of emerging pollutants. 

- Introduction of new knowledge, resulting in a mismatch between prior designs and current best practices. 

- Quantitative and qualitative shocks caused by unauthorized and industrial discharges into the sewage networks. 

- Improving effluent quality during operation, including adjustments to Sludge Retention Time (SRT), Hydraulic 

Retention Time (HRT), sludge return flow rates, sludge loading rates during the sedimentation phase, Nor/NOx.  

- The necessity for upgrading as the treatment plant approaches the end of its operational lifespan. 
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4.0 Challenges of AI in Sequencing Batch Reactor 

Despite the advancements in predictive modeling techniques, several limitations persist that hinder their 

effectiveness in bioremediation applications. Typical challenges in the application of AI in SBR wastewater treatment 

plants are listed below.  

 

Data Limitations 

One major challenge is the heavy dependence of these models on the selected data. Effective models typically 

emerge from a thorough learning and training process, which requires an appropriate dataset. However, wastewater 

treatment facilities often face constraints in historical data availability, and many communities lack the necessary data 

management and storage capabilities to support these models (Joel, Doorsamy, and Paul 2022). 

 

Additionally, missing data poses another significant challenge, as the performance and reliability of AI and 

machine learning (ML) models are closely tied to the quality of the data utilized (Joel, Doorsamy, and Paul 2022). Sensor 

data is often susceptible to inaccuracies and uncertainties, which complicate the development and training of precise AI 

models (Salem, Saraya, and Ali-Eldin 2022) 

 

Sensor faults can be categorized into two types: sudden failures (characterized by abrupt, noisy, and random 

errors) and deterioration failures (involving bias, drift, and gain issues) (D. Li et al. 2020). 

 

AI Training Concerns 

AI systems may inherit biases from their training datasets, leading to potentially unfair outcomes. In the field of 

wastewater treatment, these biases can have a disproportionate effect on marginalized communities that are already facing 

environmental disparities (Sun et al. 2022). A study highlighted that forecasting a variable using machine learning involves 

adjusting model parameters based on a training set created by Machine Learning Methods Modeling (Rodríguez-Rángel et 

al. 2022). 

 

Challenges in AI Learning and Reproducibility 

Many AI methodologies utilize customized datasets for training and testing, which can result in poor 

reproducibility (Nagpal et al. 2024). This variability complicates the process for businesses attempting to apply a single AI 

technique across diverse industry applications and poses challenges for researchers aiming to replicate and validate 

previous studies and results (Adadi 2021). Historically, monitoring nutrients (such as BOD, COD, NH4–N, NO3-N, and 

PO43
-) in bioreactors in real-time has been both challenging and costly. Consequently, studies with online controls have 

typically relied on factors that indicate biological states, such as pH levels, oxidation-reduction potential (ORP), and 

dissolved oxygen (DO) (Kwon et al. 2023). 

 

Data challenges 

The reliance of these models on selected datasets poses a significant challenge. Effective model development 

typically involves a thorough learning and training process, underscoring the importance of choosing an appropriate dataset 

wastewater treatment facilities often face limitations in historical data availability, while many communities lack the 

necessary resources for data management and storage, which are crucial for the successful implementation of these models 

(D. Wang et al. 2022). 

 

Moreover, the issue of incomplete data can exacerbate the situation, as the effectiveness of AI and machine 

learning models largely relies on the quality of the input data. Sensor data, in particular, may be prone to inaccuracies and 

uncertainties, hindering the development and training of dependable AI models (Salem, Saraya, and Ali-Eldin 2022). 

Sensor faults can be categorized into two types: sudden failures, which are abrupt and erratic, and deterioration failures, 

which involve bias, drift, or gain issues (D. Li et al. 2020). 

 

Training the AI  

AI systems can adopt biases present in their training datasets, resulting in outcomes that may be unjust. In the 

context of wastewater treatment, these biases could disproportionately affect marginalized communities that already face 

environmental injustices (Nagpal et al. 2024). A study indicated that the process of forecasting variables using machine 

learning involves adjusting the model's parameters based on a training dataset created through machine learning methods 

(Rodríguez-Rángel et al. 2022). 

 

AI learning and reproducibility 

Many AI techniques rely on customized datasets for training and validation, which can result in challenges related 

to reproducibility (Adadi 2021). This limitation complicates the ability of companies to apply a single AI method across 

various industry contexts and hinders researchers’ efforts to replicate and verify previous studies and findings (Sun et al. 

2022). 
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Historically, managing nutrients such as BOD, COD, NH4
-N, NO3-N, and PO4

3-, in bioreactors through online 

control was both complex and costly. Consequently, online studies often utilized indicators of biological states, such as 

pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) (Kwon et al. 2023). 

 

Reliability  

Achieving reliable and consistent performance from AI-driven systems in real-world applications presents 

substantial challenges, as wastewater treatment processes are influenced by complex dynamics, seasonal changes, and 

unforeseen disturbances (Abdalrahman et al. 2022). 

 

According to Rajaee and colleagues, the evaluation of the model's performance is typically conducted through a 

range of metrics, including the coefficient of correlation (R), root mean square error (RMSE), and coefficient of 

determination (R²) (Rajaee, Khani, and Ravansalar 2020). 

 

Based on Rajaee et al., the predictions made by AI tools may not always align with actual results in specific 

scenarios. It is crucial to improve the predictive abilities of these tools so that they can function effectively across various 

situations and adjust to unexpected changes in input factors. For example, sudden alterations in wastewater quality and 

operational parameters can result in inaccurate forecasts by AI tools (Alam et al. 2022). 

 

Current predictive modeling techniques may lack generalizability across different conditions and pollutants. A 

model trained on a specific dataset may perform poorly when applied to different contexts, limiting its applicability. This 

challenge underscores the importance of developing adaptable modelling frameworks that can be tailored to varying 

conditions while still providing reliable predictions (J. Li et al. 2020). 

 

Sophisticated Computations  

High computational demands are often required for advanced predictive modeling techniques, especially those 

using machine learning and simulation-based approaches. This can limit the accessibility of these models, particularly for 

smaller organizations or researchers with limited resources. Developing more efficient algorithms and leveraging cloud 

computing can help alleviate these computational constraints, making predictive modeling tools more widely available. 

 

Staff Training  

It’s important to note that operators and managers of WWTPs might not possess the required skills to successfully 

implement, maintain, and assess AI technologies. It is crucial to facilitate collaboration between wastewater treatment 

specialists and data science professionals to enhance the successful deployment of these solutions. Additionally, tailoring 

AI applications to meet the unique operational needs and limitations of each wastewater treatment plant can be a 

challenging and lengthy process (Di Maria, Daskal, and Ayalon 2020).  

 

Typically in an SBR WWTP, an average operator needs at least a year before becoming confident to operate an 

SBR process, while the process for learning the system operated by AI could be more challenging (de Silva 2003).  

 

Besides, many predictive models are complex and require sophisticated algorithms, which can lead to challenges 

in interpretation and implementation. Users may struggle to understand the underlying mechanics of these models. 

 

Compatibility with Existing Infrastructures 

Integrating AI with the existing WWTP infrastructure might also necessitate modifications and upgrades, resulting 

in further expenses. Regular maintenance and updates are crucial for ensuring the AI systems function optimally, leading 

to ongoing costs for software updates, hardware upkeep, and troubleshooting. However, AI has the potential to significantly 

improve the efficiency of these facilities in a cost-effective manner. 

 

Cost-Benefit Analysis: 

Incorporating artificial intelligence (AI) into wastewater treatment demands a thorough assessment of both costs 

and advantages. Generally, implementing AI technologies entails a considerable initial investment in the required 

infrastructure, including sensors, data storage, and computational resources, along with continuous expenses for 

maintenance and system enhancements. It is crucial to balance these financial commitments with the prospective benefits, 

which could encompass enhanced operational efficiency, lower operational costs, and improved adherence to 

environmental regulations. 

 

The implementation and advancement of artificial intelligence in wastewater treatment facilities may result in 

higher energy usage and an increase in electronic waste. Although AI enhancements, such as optimizing aeration control, 

are designed to lower energy consumption, the necessary infrastructure—including servers and sensors—can significantly 
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impact the environment. Therefore, it is crucial to evaluate and address these negative environmental effects to ensure the 

sustainable application of AI technologies (Bolón-Canedo et al. 2024). 

 

The research should prioritize the creation of detailed cost-benefit models to assist decision-makers in evaluating 

the financial feasibility of AI technologies across various wastewater treatment facilities, especially smaller plants that 

might face budget limitations. (Ly et al. 2022). 

 

Additionally, assessing the cost-effectiveness of integrating AI into wastewater treatment plants (WWTPs) can be 

difficult, as it varies based on numerous factors, including the facility's size and complexity, the nature of the wastewater 

being processed, and the specific AI technologies utilized. Furthermore, there are significant initial costs associated with 

deploying AI, such as acquiring the necessary software, hardware, sensors, and other critical equipment. Training staff to 

effectively operate these AI systems also contributes to both time and financial investments. 

 

Regulation 

It is essential that discussions on regulating AI applications in social infrastructure keep pace with this rapid 

development. However, the legal implications and potential risks associated with using AI for managing critical services 

such as wastewater treatment have not been thoroughly examined (Takeda et al. 2021a). 

 

Copyright 

As AI technology continues to advance, the question of copyright in AI-generated content becomes increasingly 

complex. Because the training of AI models demands significant human resources and time. Moreover, as the program's 

accuracy is influenced by the training methods used, this training process is deemed a critical aspect of intellectual property. 

It is important for those looking to profit from AI system development and sale. As a result, establishing clear guidelines 

and protections for AI-generated works is essential to encourage innovation while safeguarding the interests of creators 

and investors in this rapidly evolving field (Takeda et al. 2021b). 

 

Ethical Issue  

When applied to wastewater treatment plants (WWTPs), AI introduces a range of ethical challenges that must be 

addressed to ensure these technologies are used responsibly and equitably. It's important to uphold transparency and 

accountability in the AI systems employed in WWTPs to build trust with stakeholders and regulatory bodies.  

 

It is essential to offer thorough documentation of the decision-making processes behind AI systems, making it 

accessible to stakeholders. This level of transparency is crucial for ensuring accountability among both developers and 

operators regarding the outcomes produced by AI systems (Nagpal et al. 2024). 

 

5.0 CONCLUSION  
Incorporating AI technologies into Sequencing Batch Reactor (SBR) operations can significantly enhance the 

efficiency, cost-effectiveness, and management of wastewater treatment processes, thus upgrading traditional systems. The 

implementation of AI marks a transformative shift in SBR wastewater treatment facilities, facilitating improved 

management and sustainability through the use of data and sophisticated algorithms. This transition not only contributes to 

better environmental outcomes but also promotes public health. 

 

This approach offers significant potential for sustainable wastewater treatment by effectively lowering operational 

costs and safeguarding the environment. In addition to forecasting the efficiency of wastewater treatment processes, AI 

technologies can be employed to develop an integrated wastewater treatment system. This system encompasses various 

elements, including wastewater discharge, sludge management, environmental impacts, economic factors, and policy 

development. It is crucial to present data accurately, ensuring that details regarding data sources, locations, operational 

contexts, and dataset structures are included (Lowe, Qin, and Mao 2022). Ongoing research in this field is anticipated to 

yield additional innovative solutions. 
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