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Abstract: The paper considers the laws of functioning of discrete dynamical systems. The special theoretical 

apparatus of geometrical images of automata is used for formal representation of the laws of functioning. Specific 

processes of system functioning and the law of functioning of the system as a whole are defined by geometric curves and 

numerical sequences. The spectrum of dynamic parameters of the recurrence definition of numerical sequences is used to 

build estimates of the complexity of processes and laws of functioning. 
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INTRODUCTION 
One of fundamentals, making mathematical models of discrete dinamical systems are the algorithms, realized by 

system according to its target mission. For an algorithmically solvable class of problems there is an infinite set of 

algorithms (solving a class of problems), which can be ordered on complexity. Realization of algorithms is generally 

connected with complexity of algorithm in the system, defining the major indicators: performance, a memory size, 

reliability, expenditure of energy etc. Number of variants of concept of complexity is sufficiently great and continues to 

increase in works of many researchers. For example, estimations of algorithms on their belong to NP and P classes (detail 

review see, for example, in work [1] and one of contemporary papers [2], in which Radoslaw Hofman show, that P not 

equal NP), Kolmogorov сomplexity [3], complexity from below, from above, complexity on the average, bit complexity 

(one of basic work in this area is [4]), multiplicate complexity, algebraic complexity, there are very large amount of 

works on asymptotical estimations of complexity (see, for example works [5, 6]), etc. 

 

The fundamental concepts of complexity - the class of P-problems solvable in polynomial time by deterministic 

Turing machines, and the class of NP-problems solvable in polynomial time by non-deterministic Turing machines, are 

related to automatons (Turing machines). Along with the general "algorithmic" understanding of complexity in the theory 

of automata, particular variants of complexity indicators were investigated: the number of states of the automaton, the 

lengths of the input and output sequences, the number of connectivity components in the structure of the automaton, the 

complexity of the structure of the structural automaton, etc. 

 

The problem of estimating the complexity of automata was investigated by many authors immediately after the 

introduction of automata models. John von Neumann devoted a number of sections of his work "The Theory of Self-

Reproducing Automata" [7] to problems of estimating the complexity of automata: “The role of high and very high 

complexity (including the role of complexity and the need for appropriate theoretical justification, etc.); Re-evalution of 

the problems of complicated automata - problems of hierarchy and evolution." These facts further confirm the relevance 

and importance of research in the field of assessing the complexity of the laws of operation of discrete dynamical 

systems. 
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The estimation of the complexity of structural automata by the number of their constituent elements has become 

widespread. Such estimates change significantly with changes in the element base and synthesis method. 

 

According to one of the basic hypotheses of algorithm theory (which is called the Church-Turing thesis in the 

special literature), if a problem has a solution (there is an algorithm for solving it), then there exists a Turing machine 

that solves that problem. According to this hypothesis the class of all algorithms is equal to the class of Turing machines. 

In its turn, a Turing machine is an extension of a finite deterministic automaton (finite state machine - FSM) whose class 

of transformations is bounded by the number of states, inputs and outputs. If we remove the restriction on finiteness of 

the number of states of the automaton (which was done by Tverdokhlebov V. A. by introducing geometrical images of 

laws of automata functioning [8]), the Turing machine can be represented as an automaton with an infinite number of 

states, which reads and writes information from the cells of the tape. A.N. Kolmogorov and V.A. Uspenskii [9] note: "... 

constructing a theory of algorithms on the model of the theory of computing machines requires in any case some 

idealization of the notion of 'machines'. ... All the idealization necessary for the transition from real computing machines 

to mathematical algorithms consists in the assumption of an unlimited volume of "memory" of the machine.(p.6)". 

 

In connection with the development of areas of application of the theory of automata, it turned out that for real 

systems of large dimension, the assignment of automata models with tables, matrices, graphs, and logical equations is 

practically ineffective. One of the ways to expand the field of application of the theory of automata was the research of 

Academician of the Russian Academy of Natural Sciences V.A. Tverdokhlebov, in which, since 1993, is considered the 

representation of the laws of functioning of automata, given by discrete symbolic next state and output functions, by 

continuous numerical structures. 

 

For this, the automata mapping is assumed to be a set of points with numerical coordinates and the laws of 

functioning are represented by broken lines, the vertices of which are located on analytically specified curves. This 

approach to defining of automata as well as some methods of analysis, synthesis and recognition of automata by their 

geometric images are used and developed. 

 

The geometric approach used in this work to define the laws of the functioning of automata ideologically 

intersects with the research of other scientists [10-15], but has fundamental differences. For example, in [10] Benjamin 

Steinberg also considers a geometric approach to automata theory, but in the context of its use in combinatorial group 

theory, to solve various problems on the overlap between group theory and monoid theory. In [11] finite automatons are 

used in problems of encoding and compressing images, as well as in considering regular ω-languages (sets of infinite 

words defined by finite automata). 

 

The work [12], which studies discrete-event systems, is of great interest, although it also uses symbolic forms of 

defining automata models of systems. 

 

Quite interesting are the results of [13], which uses a geometric approach to describe such properties, within the 

framework of which the output function can be characterized by its polygon in the unit square [0, 1] × [0, 1], in [13] also 

investigated the properties of such polygons and their relationship with the properties of the used output function are 

investigated. 

 

Among various approaches to estimating the complexity of processes, algorithms, laws of functioning of 

automata, and implementations of these laws, the approach in which the geometrical representation of automata behavior 

is used was chosen for the study. The justification for this choice is that the setting of the laws of automata functioning in 

a geometrical way is uniquely determined by the sequence of second coordinates of points in the geometrical image; in 

the representation of algorithms by Janov schemes, algorithms are also defined by linear structures, i.e. sequences; 

implementations of algorithms for specific input data correspond to a sequence of action operators and a sequence 

consisting of initial, intermediate, and final data. Recurrence description of sequences gives a complete and deep 

characteristic of the mutual disposition of elements in a sequence: it determines the functional dependence of an element 

in the sequence on the subsequence of elements that immediately precedes it. The numerical index at the recurrence-

based definition of a sequence is the length of the unambiguously matched element of the subsequence that precedes it. 

On the basis of these properties of sequence definition by recurrence forms, V. A. Tverdokhlebov proposed 5 levels of 

spectrum that consist of numerical indices of the lowest order of recurrence form; numerical indices of lengths of initial 

sequence segments defined by recurrence forms of different orders; number of changes of recurrence forms that define 

sequence by sequences of recurrence forms of fixed order. The other levels of the spectrum characterize the lengths of 

subsequences defined by recurrence forms of different orders and characteristics of recurrence definitions taking into 

account weights for sets of arguments in the recurrence forms used. 
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The scientific novelty of this work consists precisely in the use of special theoretical apparatus of geometrical 

images of automata models of systems and the use of recurrence methods to analyze structures (numerical sequences) 

that uniquely define geometrical images. The analysis of open sources of literature allows us to conclude that similar 

studies conducted by the author have not been conducted before. 

 

1. Mathematical Apparatus 

Geometric images of the laws of the functioning of automata Recognition of geometric patterns of automatic 

models of systems 

Geometric s of the laws of operation (see [8]) (the next-state function  : SXS and output functions 

: SXY ) of an initial finite state machine As = (S, X, Y, , ) with sets of states’ S, input signals X and output signals 

Y is determined based on the introduction of a linear order  in the automata mapping  
*

)),(,(
Xp

s psp


 , 

where )),,((),( xpsps  , xpp  . An automata mapping s  (set of pairs) is ordered by the linear order ω , 

defined based on the order ω1 on X
*
 and given by the following rules: 

Rule 1. A certain linear order ω1 is introduced on the set X (which we will denote 1 ); 

Rule 2. The order ω1 on X extends to a linear order on the set X
*
, assuming that 

For any words 
*

21, Xpp   of unequal length ( 21 pp  ) 21 pp   211 pp  ; 

For any words 
*

21, Xpp   for which 21 pp   and 21 pp   , their ratio in the order ω1 repeats the ratio of 

the nearest non-coinciding letters of the words p1 and p2 to the left. 

 

The order ω´2 on the set of words Y
*
 is defined similarly. 

After introducing the linear order ω1 on the set X
*
 we obtain a linearly ordered set ),( 1 ss , where 1  is 

the order on s  induced by the order ω1 on X
*
. 

 

Defining the linear order ω2 on the set Y and placing the set of points in the coordinate system with the abscissa 

axis (X
*
, ω1) and the ordinate axis (Y, ω2), we obtain a geometric image of the laws of functioning of an initial finite state 

machine  s, ,Y,X,S,As . It should be noted that the linear orders ω1 on X
*
 and ω2 on Y are generally 

independent. This means that the specific form of the a geometric image of the laws of functioning of an initial finite 

state machine  s, ,Y,X,S,As  depends on the chosen orders ω1 and ω2 . Other variants of linear orderings on X
*
 

are also possible (see, for example, [8]). In this paper, the study of the laws functioning of an initial finite state machine 

is carried out using the order ω1 on X
*
 defined above. Linear orders ω1 and ω2 allow to replacing elements of the sets X

*
 

and Y by their numbers r1(p) and r2(p) in these orders. As a result, two forms of geometric images are determined, firstly, 

as a symbolic structure in a coordinate system 1D , and secondly, as a numerical structure in a coordinate system with 

integer or real positive semiaxes. 

 

From the geometric image s of the automaton As is extracted sequence of second coordinates of points of the 

geometric image, which one-to-one corresponds to the complete geometric image (for a fixed order on the set X
*
 and the 

value m = |X|). As a result, the laws of the automaton functioning (that is, the phase picture) and the specific processes of 

the automaton functioning (that is, the phase trajectories) turn out to be one-to-one determined by the sequence of the 

second coordinates of the points of the geometric image. This allows us to consider an arbitrary sequence of elements 

from a finite set as a sequence of the second coordinates of points of a geometric image and, therefore, as setting the laws 

of the automaton functioning. 

 

The representation of a geometric image s as a numerical structure allows to use the apparatus of continuous 

mathematics in the formulations and methods of solving problems: setting the laws of the functioning of automata by 

numerical equations, using numerical procedures, interpolation and approximation of partially given laws of functioning, 

etc. The geometric image s completely determines the laws of the automaton functioning, that is, the entire phase picture 

of the connections of the input sequences with the output signals. Specific variants of the functioning processes, that is, 

phase trajectories, have geometric images   *
s Xp,p  , in the form of s sections along individual points. Geometric 

images can also be defined by numerical, rather than symbolic, equations. 
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2. RESEARCH METHODS 
Spectrum of recurrent definition dynamic parameters as a means of sequence structure complexity estimation. 

In [8] the concept of a spectrum was introduced and developed, which characterizes the structure of a sequence, 

which can be considered as a way of definition of a geometric image of the laws of functioning. 

 

Let be  kuuuU ,...,, 21  a finite set and ξ a sequence of elements from the set U : 

),...(),...,2(),1( tuuu . The sets of all finite sequences, all finite sequences of length v and infinite sequences of 

elements from the set U will be denoted by U
*
, U

v
, U


, respectively. The spectrum Ω(ξ) of dynamic characteristics of the 

sequence   U
*
U

 
has a hierarchical structure consisting of the levels () = (0(), 1(), 2(), 3(), 4()). Each 

specific implementation option (represented by parameter values) of any level i() defines a partition of each of the sets 

U
*
, U

v
, U

 
into subsets according to the coincidence properties of the characteristics corresponding to the level. We will 

consider subsets of such a partition as equivalence classes of sequences. 

Definition 1. For any sequence 
vU , the least order of the recurrent form that defines the sequence   will be 

denoted )(0 m . 

Definition 2. For any sequence 
 U  and 

 Nm , where )(1 0  mm , the longest length of the initial segment 

of the sequence   determined by the recurrence form of order m will be denoted )(md . 

Definition 3. For any sequence 
 U  and 

 Nm , where, 11  m , the number of shifts of recurrent forms 

of order m required in determining the sequence   will be denoted )(mr . 

Definition 4. For any sequence 
 U  and 

 Nm , where )(1 0  mm  and j , where  j1 )(mr , the 

length of the j-th segment in the definition of a sequence  , will be denoted )(m

jd  . 

 

Using the introduced notation, we define the spectrum of parameters characterizing the sequence as the 

following structure: 

)()( 00  m ; 

)(),...,(),()( 21

1  ddd ; 

)(),...,(),()( 21

2  rrr ; 

)(),...,(),()( 3

2

3

1

33  
 

 

Where )(0  m  and )(),...,(),()( 213  j

n

jjj

j
ddd  ( nj – the number of the last segment in the 

definition of a sequence   as a sequence of segments defined by individual recurrent forms of order j ); 

 

))(()( 34   , where   is the operator of replacing in )(3   the lengths of the segments by the 

weights of the used recurrent forms for determining the segments. 

 

The fourth level )(4   of the spectrum )(  adds to the characteristics in the previous levels an assessment 

of the complexity of the rules and the options for using the rules. 

 

The construction of the spectrum on the basis of the hierarchical structure was made with the aim of 

successively deepening and expanding the characteristics of the properties of the sequence when moving from the 

previous level to the next. Such structure allows one to reduce the set of parameters used, if the goal of analysis is 

achieved, and to be limited to the corresponding initial fragments of the spectrum. 

 

Spectrum levels are hierarchically constructed by adding new parameters to the spectrum. In this regard, the 

equivalence of sequences is represented through t - equivalences determined by the level Ωt, 30  t . 
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3. RESULTS 
Сonstruction of complexity estimates of automatons, defined by sequences from OEIS 

In this section of the paper, the properties of fundamental mathematical quantities, defined approximately in the 

form of sequences are investigated on the basis of the spectrum of dynamic parameters. In view of the fact that a 

geometric image is mutually unambiguously determined by a sequence of second coordinates of its points, the section 

investigates the properties of the laws of functioning on the basis of an analysis of the properties of numerical sequences. 

We consider the set of sequences of length from 80 to 1000 signs represented in the bank [16] that determine 

approximations of fundamental mathematical quantities. To classify and assess the complexity of the sequences, a 

spectrum of dynamic parameters characterizing the complexity of the rules of sequence generation is used. A spectrum is 

constructed for each sequence and the set is divided into classes of equivalent sequences based on the coincidence of the 

indicators of the constructed spectrums. 

 

The basic model of discrete deterministic dynamical systems is finite deterministic automata. A comparison of 

the complexity of such automata can be made on the basis of a comparison of mathematical structures representing the 

specificity of the laws of automata functioning. Geometrical images of the laws of automata functioning can be used as 

such structures. The geometric image is constructed on the basis of, first, a linear ordering of elements of the automata 

mapping, and, second, the extraction of a sequence of second coordinates of points from a linearly ordered automata 

mapping. A comparison in terms of the complexity of the laws of functioning of automata is made on the basis of a 

comparison of the spectrums of the sequences. Based on the fact that no restrictions are imposed on the structure of 

sequences and that it can be any sequence of elements from a finite set, the method of comparing models in terms of 

complexity admits interpretation on any, in particular numerical, sequences. From a substantive point of view, spectra 

determine the complexity of sequences taking into account the properties of different variants of recurrence definitions of 

sequences. In variants of such definitions, numerical indicators are orders of recurrence forms defining individual 

segments of sequences and number of changes of recurrence forms used to define segments of a sequence. The levels of 

the spectrum are built hierarchically by adding new parameters to the spectrum. In this regard, the equivalence of the 

sequences is represented through t - equivalences defined by the level Ωt, 0 ≤ t ≤ 3 . 

 

In this section the bank of fundamental mathematical quantities, which was originally formed by N. Sloan and 

currently consists of more than 300000 integer sequences, is investigated using the spectrum of dynamic parameters. This 

bank is called "The On-Line Encyclopedia of Integer Sequences" (the abbreviation OEIS is used in this paper). 

 

The results of the OEIS bank studies are: 

1. Splitting the set of sequences under consideration into classes based on spectrum indices, i.e. into classes of 

sequences that have the same complexity of mutual arrangement of elements in the sequence; 

2. Constructing for each sequence of characteristics used to estimate the complexity of the sequence and dividing the 

set of sequences by the coincidence of the values of characteristics. 

 

In this paper, the symbol Ξ is used to denote the initial set of sequences. The conducted research of the sequence 

bank includes the following steps: 

1. From the initial set of sequences Ξ is extracted a subset 
~

 , consisting only of those sequences whose elements are 

positive integers from 0 to 9, which does not violate the illustration of the generality of the method for comparing 

sequences by the performance of Ω; 

2. Constructing the set Ψ, whose elements are the initial segments of length 80 of sequences from the set 
~

 , whose 

length l , l ≥ 80; 

3. Calculating for each element of the set Ψ the numerical values of the dynamic parameters at the levels Ω0 - Ω3 of the 

spectrum Ω; 

4. Construction of partitions P0, P1, P2, P3 of the set of sequences Ψ into subclasses of equivalent sequences by the 

coincidence of the spectrum values and analysis of obtained subclasses. 

 

After analyzing the sequences presented in the bank [16], a set Ψ consisting of 8594 sequences of length 80, 

whose elements are only integers from 0 to 9, is constructed. Partitions P0, P1, P2, P3 of the set Ψ into classes of 

sequences equivalent in terms of spectrum indicators are constructed. 

 

Obviously, when considering the set of sequences Ψ , each of which has a length of 80 characters, in the 

division of P0 of this set into classes of equivalent sequences by coincidence of the values of the level Ω0 , the number of 

classes must lie in the interval from 1 to 79 inclusive, because 791 0  m . 

 

Consequently, in the partition P0 of the set Ψ the maximum value of the number of classes of equivalent 

sequences can be equal to 79. In the analysis of the set of sequences Ψ it is observed that there exist values of m0, 
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791 0  m , which are not the minimum order of the recurrence form necessary to determine any of the sequences of 

the set Ψ. 

 

In fact, the number of classes in the partition P0 of the set Ψ is 60. Thus there are exactly 19 different values of 

m0 , which are not the minimum order of the recurrence form needed to determine any of the sequences of the set Ψ . 

Table 1 shows the characteristics of the partitions of the set of sequences Ψ . A significant increase in the number of 

classes of equivalent sequences (by 2 orders of magnitude) is observed in the construction of partitioning P1 . At the same 

time, the value of the power of the maximum class decreases. 

 

Table 2 lists some classes in the partitions P0 and P3 of the set Ψ (in abbreviated form: only the sequence 

number in OEIS and its description is given). 

 
Table 1: Information about partitions P0, P1, P2, P3 of set Ψ of sequences by indicators of sectrum Ω on levels Ω0 – Ω3 

Characteristics P0 P1 P2 P3 

Number of classes in the division 60 6262 7806 7972 

Maximum class capacity 2100 346 49 49 

Minimum class capacity 1 1 1 1 

 

For each sequence of the classes of equivalent sequences given in the table are indicated: 

1. Its number in open database of integer sequences The On-Line Encyclopedia of Integer Sequences (hereinafter 

abbreviated as OEIS); 

2. Description and possible interpretation of the sequence in the original, also extracted from [16]; 

3. The level of the spectrum by which the sequences are equivalent. 

 

Table 2: Classes of equivalent sequences in partitions P0 and P3 of the set Ψ (abbreviated information) 

Number of 

sequence in 

OEIS 

Description of a sequence in OEIS Spectrum level, by 

indicator of which 

sequences are equal 

A019765 Decimal expansion of 2*E/7 Ω0 

A098592 Number of primes between n*30 and (n+1)*30. 

A001113 Decimal expansion of e. 

A023976 First bit in fractional part of binary expansion of 9-th root of n. Ω0 

A072609 AC-range corresponds to 0, while DC-range labeled by 1. 

A095907 Digits in the concatenation of strings formed from a previous string 

by substituting "01" for "0" and "011" for "1" simultaneously at each 

occurrence. Start with [0]. 

A071029 Triangle read by rows giving successive states of cellular automaton 

generated by "rule 22". 

A071040 Triangle read by rows giving successive states of cellular automaton 

generated by "rule 214". 

A057427  Sign(n): a(n) = 1 if n>0, = -1 if n<0, = 0 if n = 0. Ω3 

A000007  The characteristic function of 0: a(n) = 0^n. 

A000038  Twice A000007 

A054977  a(0)=2, a(n)=1, n >= 1. 

A036453 a(n)=d[ d[ d[ d[ d[ n ] ] ] ] ], the 5th iterate of number-of-divisors 

function with initial value of n. 

A010873  The rightmost digit in the base-4 representation of n. Also, the 

equivalent value of the two rightmost digits in the base-2 

representation of n, a(n) = n mod 4 

Ω3 

A010883  a(n) = 1 + (n mod 4) 

A070402  2^n mod 5. 

A091086  a(n)=2-(-1)^n-cos(pi*n/2)-2sin(pi*n/2) 

A077750 a(4n-3)=0, a(4n-2)=2, a(4n-1)=6, a(4n)=4, n>0 

A055874 a(n) = largest m such that 1, 2, ..., m divide n. Ω3 

A007978 Least non-divisor of n. 

 

The geometrical approach used allows us to investigate the properties of the laws of functioning of discrete 

deterministic dynamical systems on the basis of the analysis of the properties of sequences of elements of a finite set. The 
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constructed spectrums characterize the complexity of the sequences under study from the point of view of their 

generation by recurrence forms of different orders. The spectrum characterizes all variants of bases of recurrence forms, 

which allows us to use the spectrums as characteristics of laws. 

 

To present a class of equivalent sequences with full information about each member of the class, even if the 

power of the class is 10, requires several pages of text. In view of this limitation, only a few classes were chosen by the 

author for inclusion in this paper. 

 

The choice of classes for illustration was made on the basis of "popularity" and "prevalence" of its elements. 

 

Table 3 below shows some class in the partitions P3 of the sequence set Ψ, including an approximation of the 

number π (Table 3). 

 

Table 3: The class of equivalent sequences by indicators of of the third level Ω3 of the spectrum Ω, containing an 

approximation of the number π 

Number of 

sequence in 

OEIS 

Description of a sequence in OEIS 

A000796 Decimal expansion of Pi.  

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,1,0,5,8,2,0,9,7

,4,9,4,4,5,9,2,3,0,7,8,1,6,4,0,6,2,8,6,2,0,8,9 

A059833 "Madonna's Sequence": add 1 (mod 10) to each digit of Pi. 

4,2,5,2,6,0,3,7,6,4,6,9,0,8,0,4,3,4,9,5,7,3,7,5,4,4,9,4,3,8,0,6,1,3,9,9,5,2,0,8,2,7,0,4,0,0,4,8,6,2,1,6,9,3,1,0,8

,5,0,5,5,6,0,3,4,1,8,9,2,7,5,1,7,3,9,7,3,1,9,0 

A089250 Add 2 (mod 10) to each decimal digit of Pi. 

5,3,6,3,7,1,4,8,7,5,7,0,1,9,1,5,4,5,0,6,8,4,8,6,5,5,0,5,4,9,1,7,2,4,0,0,6,3,1,9,3,8,1,5,1,1,5,9,7,3,2,7,0,4,2,1,9

,6,1,6,6,7,1,4,5,2,9,0,3,8,6,2,8,4,0,8,4,2,0,1 

A030644 Decimal expansion of 10-Pi. 

6,8,5,8,4,0,7,3,4,6,4,1,0,2,0,6,7,6,1,5,3,7,3,5,6,6,1,6,7,2,0,4,9,7,1,1,5,8,0,2,8,3,0,6,0,0,6,2,4,8,9,4,1,7,9,0,2

,5,0,5,5,4,0,7,6,9,2,1,8,3,5,9,3,7,1,3,7,9,1,0 

 

A study of sequences from the OEIS bank that included building spectrums for the extracted subset of sequences 

Ψ and classifying the set of fundamental mathematical sequences Ψ based on the matching of quantitative values of the 

spectrum indicators showed that the spectrum of dynamic parameters of recurrenceally determined numerical sequences 

can be used to classify arbitrary sequences of elements from a finite set and to classify laws of functioning of discrete 

determined dynamical systems. 

 

4. DISCUSSIONS AND POSSIBLE DIRECTIONS FOR FURTHER RESEARCH 
The results presented in the article show the possibility of practical use of the spectrum of dynamic parameters 

to determine the properties of the laws of functioning of discrete deterministic dynamic systems on the basis of the study 

of the properties of numerical sequences that mutually unambiguously determine the laws of functioning. 

 

It is of independent interest to study the properties of binary characteristic sequences (interpreted as sequences 

of second coordinates of points of geometrical images of automata models of systems) that carve numbers with specific 

properties in a natural number series using the spectrum of dynamic parameters described above. 

 

One of the important and open questions in both number theory and cryptography is the question of the structure 

of the distribution of prime numbers in natural numbers. For finding prime numbers from more than 100,000,000 and 

1,000,000,000 decimal digits EFF (Electronic Frontier Foundation - a nonprofit human rights organization founded in 

July 1990 in the United States to protect the rights embodied in the Constitution and the Declaration of Independence in 

connection with the advent of new communication technologies) awarded cash prizes of $150,000 and $250,000, 

respectively. Earlier, the EFF has already awarded prizes for finding prime numbers from 1,000,000 and 10,000,000 

decimal digits. In this regard, one of the possible directions for the further research can be the construction and analysis 

of spectrums for characteristic sequences of large length, which distinguish prime numbers in a natural numbers, as well 

as characteristic sequences reflecting combinations of the properties of prime numbers, Mersenne numbers, Lucas 

numbers, Woodall (or Riesel) numbers, numbers Cullen, Proth numbers, Mills numbers, etc. Perhaps, in this direction it 

will be possible to identify new properties of prime numbers that are interest. 
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5. CONCLUSIONS 
The results outlined in the paper show the possibility of practical use of the spectrum of dynamic parameters to 

determine the properties of the laws of functioning of discrete deterministic dynamical systems by investigating the 

properties of numerical sequences that mutually unambiguously determine the laws of functioning. The basic model of 

discrete deterministic dynamical systems is finite deterministic automata. A comparison in terms of the complexity of 

such automata can be made on the basis of a comparison of mathematical structures representing the specificity of the 

laws of functioning of the automaton. Geometric images of the laws of automata functioning can be used as such 

structures. The geometric image is built on the basis, first, of a linear ordering of elements of the automata mapping, and, 

second, of the extraction of a sequence of second coordinates of points from the linearly ordered automata mapping. A 

comparison in terms of the complexity of the automata functioning laws is based on a comparison of the spectra of the 

sequences. Based on the fact that no restrictions are imposed on the structure of sequences and it can be any sequence of 

elements from a finite set, the method of model complexity comparison admits interpretation on any, in particular 

numerical, sequences. From the substantive point of view, spectra define the complexity of sequences taking into account 

the properties of different variants of recurrence definitions of sequences. In the variants of such definitions, the 

numerical indicators are the orders of recurrence forms defining individual segments of sequences and the number of 

changes of recurrence forms used to define the segments of the sequence. Application of a special spectrum of dynamic 

parameters in the analysis of structures of mutual arrangement of elements in sequences has allowed us to obtain new 

results in the analysis of discrete dynamic systems and, moreover, has allowed us, by the example of sequences defining 

fundamental mathematical quantities, to carry out complexity estimates and classify by complexity the laws of 

functioning of systems. 
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