
ISSN 2664-4150 (Print) & ISSN 2664-794X (Online)

South Asian Research Journal of Engineering and Technology

Abbreviated Key Title: South Asian Res J Eng Tech

| Volume-2 | Issue-6 | Nov-Dec -2020 | DOI: 10.36346/sarjet.2020.v02i06.001

Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial

use provided the original author and source are credited.

 © South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 45

Original Research Article

Towards Secure Software Engineering

L M Jayalath
*
, K A C Dharshana, R M T P Rathnayake

“Vijaya Niwasa”, Ananda Mw, Kithulampitiya, Galle.

No: 40, Bodiraja Mawatha, Buwalikada, Kandy.

Paliyakotuwa, Hettipola

*Corresponding Author

L M Jayalath

Article History

Received: 10.11.2020

Accepted: 22.11.2020

Published: 25.11.2020

Abstract: Software plays a major role in the present context. Therefore more and more software solutions are

developed. These software solutions are hacked due to vulnerabilities available in the software. Most of these

vulnerabilities are security-related. One of the key reasons behind this is the lack of security-related knowledge among

the developers. Therefore it is important to assist them during the implementation stage. There are static analysis tools to

assist them but these tools have a high concern on code quality and the architecture while having less attention for code

security. Due to all these, it cost a lot during the maintenance phase to overcome the security-related issues. The

suggested solution is a combination of three modules. Module one will rank the threats identified by the Microsoft Threat

Modeling Tool in the design phase. Module two is an IntelliJ plugin which will assist the Java developers to maintain

software security with respect to fifteen selected CERT guidelines. Module three will compare the design and the

implementation while considering the inputs from the other two modules.

Keywords: Microsoft Threat Modeling Tool, STRIDE, threat ranking, CERT security guidelines, CWE, data flow

diagram.

INTRODUCTION
Software solutions have positively impacted the living standard of the people. As a result of that more and more

software solutions are developed. These software solutions are hacked by exploring the vulnerabilities or the loop holes

available [10]. Most of the vulnerabilities are security related. Major reason behind this is the lack of security concerns

during the software development life cycle. Most of the software developers do not have much knowledge about software

security aspects. Hence security concerns are neglected during the implementation stage where most of the software

security violations could be mitigated. As a consequence of all these it cost a lot during the maintenance phase to

overcome the security issues [11]. Therefore it is really important to pay attention to the security aspect during early

stages of the software development life cycle. There are static analysis tools to assist the developers during the

implementation stage. But these tools pay high attention to code quality and architecture while having less concern about

security aspects [7].

Secure Development Life Cycle (SDLC) is a model which is developed to focus on the security aspect at each

and every phase of the Software Development Life Cycle [15]. According to this model there are some basic actions to

be performed during each phase as illustrated in figure 1.

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 46

Fig-1: Secure Development Life Cycle (SDLC)

As the mistakes which happen during the design and the implementation stages result high degree of security

vulnerabilities, this research is focusing on those two stages [22]. It is identified that there are several tools available in

the market to SDLC approach during software design and development. Microsoft Threat Modeling Tool is one such tool

which is used during the design stage. It is used to analyze data flow diagrams and will give a report containing possible

security threats which could occur. Here the threats are categorized according to STRIDE model [23]. For a complex data

flow diagram this tool gives a lot of possible threats. Practically it is not possible to consider all the threats there for it is

really essential to rank the threats. With the ranking it is possible to prioritize the threats. Then it will reduce a high

amount of possible threat by resolving the highest prioritized threats. In order to aid the software development stage there

are static analysis tools such as SonarQube. These Static analysis tools are unable to catch the security violations in the

code at real time.

Implemented solution will help to practically implement the SDLC for software design and development stages

with three separate modules which are integrated together with the help of a common database. First module will rank the

threats identified by the Microsoft Threat Modeling Tool. As a result of that the developer will get to know the highest

prioritized threats that he should consider during the development stage in order to reduce the damage. Second module is

a plugin which is designed to identify security guideline violations on the fly. And the third module will compare the

results given by the two modules which represent two phases of the software development life cycle. This comparison

will help to identify the phase (design or implementation) responsible for the identified security guideline violations with

the second module. When considering about the industrial level development of software, each phase of the software

development lifecycle is carried out by different teams of individuals. There for it is highly essential to compare the

stages and to identify the responsible stage for the violations.

EXPERIMENTAL SECTION
Design and the implementation of the implemented solution will be discussed in three modules. First module is

the threat ranking module and figure 2 demonstrates architecture of that module. Data flow diagrams are the input of this

module. Only the web applications are being considered on this module. Microsoft Threat Modeling Tool helps to find

the threats in the design phase of the Software projects. Data Flow Diagrams (DFD) are drawn through the Microsoft

threat modeling tool. And this tool provides the threat report according to the drawn DFD. Threat report includes all the

threats that can happen according to the drawn DFD. The threats are separated with respect to the interactions. And all

the threats are categorized under specific STRIDE. Threat report is generated as an HTML page. Therefore Natural

language processing is used to read the HTML page and to extract the threats. Mainly the threats are extracted in two

ways. With respect to the interactions and under specific STRIDE. Mainly there are three modules in this project. These

three modules are connected to the database. Extracted threats according to the interactions are sent to the database. That

details are used as inputs to module three. By analyzing multiple threat reports for the web applications, identified 27

main different consequences that can happen according to the drawn data flow diagrams. Each type of web application

was used for this analysis except static and animated web applications. And there can’t be any threat which is out of the

identified 27 threats. DREAD is a threat modeling and risk assessing methodology which is used to rate, compare and

prioritize the severity of risk. By using the DREAD model, the risk rating can be done for a given threat by asking the

following questions:

 Damage potential: How great is the damage if the vulnerability is exploited?

 Reproducibility: How easy is it to reproduce the attack?

 Exploitability: How easy is it to launch an attack?

 Affected users: As a rough percentage, how many users are affected?

 Discoverability: How easy is it to find the vulnerability?

There is a scoring table that used to calculate the severity of the risks in the DREAD model. After asking the

above questions, count the values (1–3) for a given threat. The result can fall in the range of 5–15. Then it can treat

threats with overall ratings of 12–15 as High risk, 8–11 as Medium risk, and 5–7 as Low risk. This DREAD model is not

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 47

a technical threat ranking method. It is a manual approach. lecturers, professors, and specialists in this field rank the

threats by answering the aforementioned questions according to their experience and knowledge. There is a certain

scoring system that is used to ranking the threats. Otherwise, each individual can rate the threats in their own way. If the

individuals ranking the threats their own way, the variance of the rating values can differ for the same threat. Here the

identified 27 major threats have been ranked according to High, Medium and Lower rates. Therefore multiple research

papers are used to rank the threats by DREAD model. Keywords have been created to identify the main 27 threats

separately. Identified keywords are applied to the extracted threats. According to the keywords, the threats are ranked as

High, Medium and Low. And finally, identify the highest priority threats.

Fig-2: Architecture of Module 1

For the implementation of ranking the threats, first it is needed to draw the DFD (Data Flow Diagram) through

the Microsoft threat modeling tool. Therefore different data flow diagrams were drawn to analyze the threat reports. After

that threat reports were generated for each Data flow diagrams. Then threat report has been read by using natural

language processing (NLP).The Microsoft threat modeling tool provides the html type threat report. Therefore python

libraries had to be used to read the html type threat report. By reading the threat report, all the threats were extracted from

the HTML page. And Spyder IDE was used to extract the threats. NLTK, re (Regular expression), urllib and beautiful

soup python libraries were used to extract the threats from the threat report. Threats are extracted in two ways from the

threat reports. The extracted threats under interactions are sent to the database. These details are used in module three.

The extracted threats as STRIDE are used to rank the Threats. MySQL is used as a database to store the data. And

interface have been created to insert the threat report for any user. That user can insert the file location of the threat report

by using the save file dialog box. After inserting the threat report, the report is read by NLP and extracted all the threats

from the report. And each threat is checked with the keywords and separated as High, Medium and Low. After clicking

the rank button user can view the threats ranked according to high, medium and Low.

With module 2, it is expected to develop a plugin to IntelliJ IDE and the source code is read from the IntelliJ

plugin in real time while the developer is coding. For reading the source code, Java Parser was selected as the language

support needed is Java and the accuracy is high instead of creating a custom parser. The source code is passed through

the Java Parser library and it is converted into an Abstract Syntax Tree (AST) using Java Parser. A logic is written for

each SEI CERT secure coding violations out of selected 15, in order to identify the relevant violations in the code. The

AST from the Java Parser is read and relevant data structure, class, method or code fragment relevant to the given logic is

read and compared with each other. If there exists an equivalence between them, a security violation is identified and it is

visually shown to the developer by highlighting the code syntax. At the end of the project completion, the final results

containing all the violations of the project is stored in a MySQL database to be used for the Module 3 in order to do

further tasks in the project. Above mentioned steps are clearly demonstrated with figure 3.

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 48

Fig-3: Architecture of Module 2

To assist the developer, IntelliJ plugin was built by using Gradle approach and Java Parser was used to parse the

source code for identifying security violations. The violations of the code are identified mainly by using method level,

class level and package level violation detectors based on the source code fragment which leads to the violation. The

source code which is parsed by the Java Parser is converted to AST and is read by “ClassLevelCode.java”,

“MethodLevelCode.java” and “PackageLevelCode.java” classes which are implemented in the plugin project. From these

classes, all the classes, methods, data structures and code fragments of the source code are categorized and can be

accessed at any time as they are stored in separate data structures such as Array Lists and Hash Maps to be used when

necessary. Logics to identify secure coding violations are written as separate methods inside “ClassLevelViolation.java”,

“MethodLevelViolation.java” and “PackageLevelViolation.java” classes. These classes use data from the data structures

from the previous steps to check the equality with the logic and then the security violations are detected. The

“RealtimeParser.java” class of the framework is used to capture source code fragments the user types in IntelliJ IDE in an

on the fly manner. At each time the user types a source code, an AST is generated by the Java Parser library and the

relevant Java Parser methods are used to traverse the AST with the support of the Visitor design pattern found in the Java

Parser library. And the conditions inside “RealtimeParser.java” checks for violations by checking the logics written at

“ClassLevelViolation.java”, “MethodLevelViolation.java” and “PackageLevelViolation.java” classes. Finally, the syntax

of the identified violations is highlighted and shown visually to the developer by using the “Syntax Highlight” library in

java IntelliJ. At the end of the project, the developer is allowed to save violated rules to a MySQL database to be used at

module 3 after pressing a button.

Module three will compare the results given by the two modules which represent two phases of the software

development life cycle. And the steps used to compare the two stages are demonstrated with figure 4 and each step is

discussed in detail.

Fig-4: Architecture of Module 3

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 49

Interactions - They are the interactions identified by the Microsoft Threat Modeling Tool (TMT). These

interactions contain relevant STRIDEs associated with each interaction. And there may be a number of STRIDEs for a

specific interaction.

CWE Mapper - There was no approach to map CERT with the interactions directly. In order to perform that

CWE mapper is used. Here the Identified CERT security guidelines are mapped with relevant CWE (Common Weakness

Enumeration). There may be more than one matching CWE for one specific CERT.

Phase Identifier - This will identify whether the design phase or the implementation phase is responsible for the

identified CWEs by the CWE Mapper.

STRIDE Mapper - This will map the CWEs with the associated STRIDEs as mentioned in the table. CWE site

provides the associated security controls for each CWE and the security controls are mapped to respective matching

STRIDE according to table.

STRIDE Identifier - This will identify the specific STRIDEs associated with the interactions identified in the

report generated by the Microsoft Threat Modeling Tool.

Vulnerable Interaction Identifier - This will take inputs from both STRIDE mapper and the STRIDE identifier.

From the STRIDE mapper it has a set of CWEs with the associated STRIDEs for each and from the STRIDE identifies it

has a set of interactions with the associated STRIDEs for each.

This module is going to find whether there is a matching interaction for the available CWEs. In order to perform

that it will consider the CWEs separately in which the interactions where the STRIDEs of the CWEs are a subset of the

STRIDEs of the interactions are identified. If there is only one matching interaction for a specific CWE, then it will be

identified as the interaction which is responsible for the considered CERT security guideline violation. Else if there are

more than one matching interaction for a specific CWE then it will direct to the Text Similarity Calculator.

Text Similarity Calculator - This is used to find the highest matching interaction for a given CWE when there

are more than one matching interaction is identified by the Vulnerable Interaction Identifier. Here a text similarity

calculation is done between the descriptions provided for the CWE with the descriptions provided for the STRIDEs for

the considered interaction. Interaction having the highest similarity value will be considered as the interaction responsible

for the identified CERT security guideline violation. Cosine Similarity algorithm is used to calculate the similarity.

Comparison Report - This will generate a comparison report as the final output of this module. This report will

contain details such as Identified CERT guideline violations, CWEs associated with each CERT, Classes and the lines

where the CERT guideline violation has occurred, Responsible phase (design, implementation) and Interaction which is

responsible for the CERT guideline violation if it is identified as a design fault.

In order to perform the comparison it requires data from Module one and Module two. Data from the two

modules are stored in a hosted MySQL database. The database is normalized to third normal form in order to reduce the

data redundancy. An interface is provided to the user where it gives the opportunity to select the required threat report

and the vulnerability report to be compared. Used JFrames to design the interface. Further it facilitates the user to specify

a location where to save the generated report. Then the required data is passed to the back end which is developed using

Java. Back end contains the comparison logic. After completing the comparison it will generate a report.

RESULTS AND DISCUSSION
Most of the times security impact of the code is considered during the latter stages of the Software Development

Lifecycle (SDLC). Due to this it cost a lot to overcome those issues. Suggested and implemented approach which is

discussed with this paper will try to bring software security concern to the early stages of the SDLC. In order to achieve

that aim, suggested solution is implemented in three modules where module 1 addresses the design phase, module 2

addresses the implementation phase and module three compares the two stages to find out which phase is responsible for

an identified secure coding guideline violation during the implementation stage.

Implemented solution was evaluated as three separate modules. First module was evaluated using a study based

evaluation. For that two research papers which used DREAD model to rank the threads were used. With the use of the

Microsoft Thread Modeling Tool two separate thread reports were generated for the considered data flow diagrams in the

selected papers. Then the thread reports were used as the input for first module and ranked the threads. Finally the ranked

threads were evaluated against the results obtained in the papers. Accuracy and precision of first module is shown in

figure 5.

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 50

Fig-5: Evaluation Results of Module 1

At the moment this module only considers web applications. As a future development it is required to consider

other types of applications.

Module two was evaluated using SEI CERT guidelines’ sample code base evaluation. This was conducted to

check the expected accuracy of the implemented plugin. SEI CERT website provides both compliant and non-compliant

code samples. Non – compliant code was used to detect whether the plugin detects vulnerabilities and compliant code

was used to check whether the plugin ignores the corrected code. Table 1 lists the results of the devaluation.

Table-1: Evaluation Results of Module 2

In order to further evaluate module two, GitHub project based evaluation was done. For this analysis a set of

open source Java projects were selected and those details are shown in table 2. Then selected code bases were scanned

using the implemented plugin to detect secure coding guideline violations if available. And the same code bases were

also analyzed against some popular secure coding tools used in the industry (SonarQube, Sonar Lint, Find Bugs, and

Check Style). Results obtained are shown in table 3 and evaluation of the results is shown in table 4.

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 51

Table-2: Details about the Selected GitHub Projects

Table-3: GitHub Evaluation Details

Table-4: GitHub Project Evaluation Results for Module 2

Hence the plugin identifies the vulnerabilities

correctly for the selected fifteen rules; the number of

rules should be increased in future in order to improve

the commercial value of the solution.

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 52

GitHub project based evaluation was carried

out for module three. For that a Java project was

selected and a proper data flow diagram (DFD) for that

specific project was designed with the help of an

industry specialist. Then a thread report was generated

for that DFD. And with the help of the plugin, identified

the available CERT security guideline violations. With

the above two inputs for module three generated the

comparison report. Finally evaluated the comparison

report against the selected project and the respective

data flow diagram with the assistance of a domain

specialist. Figure 10 shows the results obtained for

phase identification (whether the fault is design related

or implementation related) and figure 11 shows the

results for interaction identification.

Table-5: Phase Identification Results for Module 3

Fig-6: Interaction Identification Results

With the above evaluation it is clear that

interaction identification section should be improved. In

order to achieve that inputs for the cosign similarity

calculation should be improved. Therefor more

improved natural language processing techniques

should be used in future.

CONCLUSION
Static analysis tools available in the market do

not have much concern about the software security.

With the implemented solution it will make the life of

the developers easy by assisting them during the

implementation about the secure coding violations with

respect to with respect to fifteen selected CERT

guidelines. Legacy systems may have several security

related issues but it is really difficult to find where the

issue is and what the priority of that issue is. With the

implemented solution we will consider legacy systems

with an available code base. Then solution will consider

the available DFD and rank the threads according to a

priority order. Hence it will provide a good

understanding on what are the threats to be solved first.

With the comparison between the implemented code

and the DFD, it will allow to find which phase is

responsible for violating the secure coding guidelines.

ACKNOWLEDGEMENT
We would like to extend our heartfelt gratitude

to the following people who have helped and guided us

in numerous ways to make the project a success. Our

supervisors Mr. C.P.Wijesiriwardane and Dr.

I.N.Manawadu, for the immense assistance and

guidance they have always given us and motivating us

towards achieving the aim of the project. All the

academic staff at the Faculty of Information

Technology of University of Moratuwa, who have

L M Jayalath et al; South Asian Res J Eng Tech; Vol-2, Iss- 6 (Nov-Dec, 2020): 45-53

© South Asian Research Publication, Bangladesh Journal Homepage: www.sarpublication.com 53

given us knowledge and guidance throughout our

undergraduate years. All the non-academic staff of

Faculty of Information Technology of University of

Moratuwa, members of our families, our friends and

batch mates who have supported us in numerous ways.

REFERENCES
1. Baltes, S., Schmitz, P., & Diehl, S. (2014,

November). Linking sketches and diagrams to

source code artifacts. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on

Foundations of Software Engineering (pp. 743-

746).

2. Boehm, B. W. (1991). Software risk management:

principles and practices. IEEE software, 8(1), 32-

41.

3. Bruneliere, H., Cabot, J., Jouault, F., & Madiot, F.

(2010, September). MoDisco: a generic and

extensible framework for model driven reverse

engineering. In Proceedings of the IEEE/ACM

international conference on automated software

engineering (pp. 173-174).

4. Daud, M. I. (2010, March). Secure software

development model: A guide for secure software

life cycle. In Proceedings of the international

MultiConference of Engineers and Computer

Scientists (Vol. 1, pp. 17-19).

5. Do, L. N. Q., Ali, K., Livshits, B., Bodden, E.,

Smith, J., & Murphy-Hill, E. (2017, May).

Cheetah: just-in-time taint analysis for android

apps. In 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion

(ICSE-C) (pp. 39-42). IEEE.

6. Favre, J. M., Lämmel, R., Leinberger, M.,

Schmorleiz, T., & Varanovich, A. (2012, October).

Linking documentation and source code in a

software chrestomathy. In 2012 19th Working

Conference on Reverse Engineering (pp. 335-344).

IEEE.

7. Ferenc, R., Langó, L., Siket, I., Gyimóthy, T., &

Bakota, T. (2014, September). Source meter sonar

qube plug-in. In 2014 IEEE 14th International

Working Conference on Source Code Analysis and

Manipulation (pp. 77-82). IEEE.

8. Fujdiak, R., Mlynek, P., Mrnustik, P., Barabas, M.,

Blazek, P., Borcik, F., & Misurec, J. (2019, June).

Managing the secure software development.

In 2019 10th IFIP International Conference on

New Technologies, Mobility and Security

(NTMS) (pp. 1-4). IEEE.

9. Gomes, I., Morgado, P., Gomes, T., & Moreira, R.

(2009). An overview on the static code analysis

approach in software development. Faculdade de

Engenharia da Universidade do Porto, Portugal.

10. Guan, H., Chen, W. R., Li, H., & Wang, J. (2011).

STRIDE–Based Risk Assessment for Web

Application. In Applied Mechanics and

Materials (Vol. 58, pp. 1323-1328). Trans Tech

Publications Ltd.

11. Khoo, Y. P., Foster, J. S., Hicks, M., & Sazawal, V.

(2008, November). Path projection for user-

centered static analysis tools. In Proceedings of the

8th ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and

engineering (pp. 57-63).

12. Meier, J. D. (2003). Improving web application

security: threats and countermeasures. Microsoft

press.

13. Piessens, F. (2002, November). Taxonomy of

causes of software vulnerabilities in internet

software. In Supplementary Proceedings of the

13th International Symposium on Software

Reliability Engineering (pp. 47-52). IEEE

Computer Society Press, Los Alamitos, CA.

14. Prähofer, H., Angerer, F., Ramler, R., &

Grillenberger, F. (2016). Static code analysis of

IEC 61131-3 programs: Comprehensive tool

support and experiences from large-scale industrial

application. IEEE Transactions on Industrial

Informatics, 13(1), 37-47.

15. Ragunath, P. K., Velmourougan, S., Davachelvan,

P., Kayalvizhi, S., & Ravimohan, R. (2010).

Evolving a new model (SDLC Model-2010) for

software development life cycle

(SDLC). International Journal of Computer

Science and Network Security, 10(1), 112-119.

16. Rao, K. R. M., & Pant, D. (2010). A threat risk

modeling framework for Geospatial Weather

Information System (GWIS): a DREAD based

study. international Journal of Advanced Computer

Science and Applications, 1(3).

17. Wichers, D. (2013). Owasp top-10 2013. OWASP

Foundation, February.

18. Rao, K. R. M., & Pant, D. (2010). Security risk

assessment of geospatial weather information

system (gwis): An owasp based

approach. International Journal of Computer

Science and Information Security, 8(5), 208-218.

19. Venkataraman, S., & Harrison, W. (2005).

Prioritization of threats using the k/m algebra.

In Proceedings of Workshop on Software Security

Assurance Tools, Techniques, and Metrics (pp. 90-

95).

20. Caulkins, J., Hough, E. D., Mead, N. R., & Osman,

H. (2007). Optimizing investments in security

countermeasures: A practical tool for fixed

budgets. IEEE Security & Privacy, 5(5), 57-60.

21. Zenah, N. H. Z., & Abd Aziz, N. (2011,

December). Secure coding in software

development. In 2011 Malaysian Conference in

Software Engineering (pp. 458-464). IEEE.

22. McGraw, G. (2004). Software security. IEEE

Security & Privacy, 2(2), 80-83.

23. McRee, R. (2014). Microsoft threat modeling tool

2014: identify & mitigate. ISSA Journal, 39, 42.

