Better Wavelength for Cadmium Analysis between 228.8 Nanometer and 228.9 Nanometer in Atomic Absorption Spectrophotometry

Yong Kook Kim1, Byung Hoon Park2, Hyeonhi R. Park3, Jiah A. Kim4, Rosa Kim5, Alain Hamon6, Sohwa T. Kim7, Ye Ram Jeong8, Chan Hee Cho9, Jun Su Park10, Yubin Kim11, Chae Bin Gwak12, Jiho Lee13, Seung Hwan Han14, Jeong Seok Oh15, Sunho Kim16, Jun Young Lee17, Sangdeog A. Kim18*

1Department of Dairy Science, Chungnam National University, Daejeon, Republic of Korea (ROK)
2Department of Companion Animal and Animal Resources Science, Joongbu University, Kumsan, ROK
3Department of Elderly care and welfare, Joongbu University, Kumsan, ROK
4Département d'Expertise economique, Université de Paris-Est Creteil, Paris, France
5Spécialité d'Economie politique, Ecole des Hautes Etudes en Sciences Sociales, Paris, France
6Groupe scolaire iféa - Emilie du Châtelet, 92110 Clichy, France
7Department of French language and literature, Seoul Women's University, Seoul, ROK
8,9Department of Companion animal and animal resources science, Joongbu University, Kumsan, ROK
10-16Department of Companion animal and animal resources science, Joongbu University, Kumsan, ROK
17Department of Companion animal and animal resources science, Joongbu University, Kumsan, ROK
18*Corresponding Author

Sangdeog A. Kim

Article History
Received: 16.09.2020
Accepted: 23.09.2020
Published: 27.09.2020

Abstract: Several wave-lengths can be used for an element analysis on atomic absorption spectrophotometry [1]. Et Park et al. [2] wrote that the wave-length of cobalt determination can be changed. So this time the researchers tried to find out the better wave length for cadmium (Cd) analysis. The researchers found that the flat state from the minus to the plus seems to be good for the appropriate Cd analysis (Figure 1). There is another thing for the appropriate wave length; the thing is the pillar near the 228.9 nanometer.

Keywords: 228.9 nanometer, atomic absorption spectrophotometry, cadmium, flat state, pillar, wave-length.

INTRODUCTION
Several wavelengths can be used for an element analysis on atomic absorption spectrophotometry [1]. Et Park et al. [2] wrote that the wave length of cobalt determination can be changed. So this time the researchers tried to find out the better wave length for cadmium (Cd) analysis.

MATERIALS AND METHODS
The used atomic absorption spectrophotometer was Varian product. And it is well known that 228.8 nm is advised for Cd analysis [1], but the researchers tried to treat the condition of 228.9 nm.

RESULTS AND DISCUSSION
Figure 1 (the figure number 24) shows the change of absorption for cadmium (Cd) analysis from the right part to the left part, and the position of 228.8 nanometer (nm) was indicated good for the Cd analysis. It is because the direction of absorption was changed from the minus to plus. But it is shown that the better position seems to be 228.9 nm, it is because this spot seems to the just point of turning point from minus to plus.
Figure 2 (the figure number 23) also shows the similar change of value from the minus on the right side to the plus on the left side. And there is a specific sign of large pillar.

The researchers found that the flat condition from the minus to the plus seems to be good for the appropriate Cd analysis (Figure 1). There is another thing for the appropriate wave length; the thing is the pillar near the 228.9 nanometer.

(Figure 1. The change of absorption for cadmium (Cd) analysis from the right part to the left part, and the position of 228.8 nanometer (nm).)

(Figure 2. The change of value from the minus side on the right side to the plus one on the left side.)

![Figure 1](image1.png)

Fig-1: The change of absorption for cadmium (Cd) analysis from the right part to the left part, and the position of 228.8 nanometer (nm)

![Figure 2](image2.png)

Fig-2: The change of value from the minus side on the right side to the plus one on the left side

Further suggestions

The practical analysis is necessary for the certification of this theoretical work.

Conflicts of interests

There are no conflicts of interests to declare.
ACKNOWLEDGEMENTS

We thank Mr Yeonghag Park and Mrs Hilye Sarah Kim, Mr Ilsoo Joseph Kim and Mrs Bohwa Kim and Ms Jieun Agatha Kim and Mr Kunjoo Daegon-Andrea Kim, Father Jean Blanc and Father Hifumi Iwazaki, Professor Tae Song Koh and Professor Shigekata Yoshida, Mrs Tamako Hayashi and Mr Yoshihiro Hayashi, Mrs Francine Tenaillon and Professor Nicolas Tenaillon, Mrs Sookja Nam and Mrs Sookja Martha Min and Mrs Kiseon Cecile Song, Professor Alain Bermond and Mr Stéphanie Debrée, the members of Daejeon Ludovich of Ordo Franciscanus Saecularis(OFS) and the members of Daejeon Nae-dong Catholic Church.

REFERENCES
