# **SAR Journal of Anatomy and Physiology**

Abbreviated Key Title: SAR J Anat Physiol

Home page: https://sarpublication.com/journal/sarjap/home DOI: https://doi.org/10.36346/sarjap.2025.v06i05.003



ISSN 2707-7713 (P) ISSN 2709-6874 (O)

Original Research Article

## Effects of Cobalt on Aquatic Plant Lemina minor

**Douaa Taleb Mohammed**<sup>1\*</sup>, **Fatima Saeed Kadhim**<sup>1</sup>, **Zainab Kadhim Enad**<sup>1</sup> Collage of Environment Science, Al-Qasim Green University, Babylon51013, Iraq

\*Corresponding Author: Douaa Taleb Mohammed

Collage of Environment Science, Al-Qasim Green University, Babylon 51013, Iraq

Article History: | Received: 05.08.2025 | Accepted: 04.10.2025 | Published: 16.10.2025 |

**Abstract:** In this work, aquatic plants Lemina minor were exposed to varying concentrations of cobalt [10, 20, and 30 mg/L] for a month in order to measure the amount of total chlorophyll and its protein content. This was done to evaluate the effects of various salt concentrations on the physiological states of the plants. The investigation's conclusions showed that the amounts of the components in the water plants used for the research rose in a different way than in the control sample as the study came to an end. We examined the levels of protein and chlorophyll in water plants exposed to heavy metals.

Keywords: Lemina Minor, Chlorophyll and Protein and Cobalt.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

#### INTRODUCTION

Cobalt is a transition metal located in the fourth row of the periodic table and is a neighbor of iron and nickel [1]. It has been considered an essential element for prokaryotes, human beings, and other mammals, but its essentiality for plants remains obscure [2]. In this article, we proposed that cobalt (Co) is a potentially essential micronutrient of plants [3].

Co is essential for the growth of many lower plants, such as marine algal species including diatoms, chrysophytes, and dinoflagellates, as well as for higher plants in the family *Fabaceae* or *Leguminosae* [4]. The essentiality to leguminous plants is attributed to its role in nitrogen (N) fixation by symbiotic microbes, primarily rhizobia [5].

Co is an integral component of cobalamin or vitamin  $B_{12}$ , which is required by several enzymes involved in  $N_2$  fixation. In addition to symbiosis, a group of  $N_2$  fixing bacteria known as diazotrophs is able to situate in plant tissue as endophytes or closely associated with roots of plants including economically important crops, such as barley, corn, rice, sugarcane, and wheat [6].

Their action in  $N_2$  fixation provides crops with the macronutrient of N. Co is a component of several

enzymes and proteins, participating in plant metabolism. Plants may exhibit Co deficiency if there is a severe limitation in Co supply [7]. Conversely, Co is toxic to plants at higher concentrations. High levels of Co result in pale-colored leaves, discolored veins, and the loss of leaves and can also cause iron deficiency in plants [8].

It is anticipated that with the advance of omics, Co as a constitute of enzymes and proteins and its specific role in plant metabolism will be exclusively revealed [9]. The confirmation of Co as an essential micronutrient will enrich our understanding of plant mineral nutrition and improve our practice in crop production [10].

Cobalt has a dual effect on plants: It is essential for growth, particularly in nitrogen fixation in legumes (as a component of vitamin B12), which promotes plant growth and chlorophyll formation. However, high concentrations of cobalt are toxic, causing iron deficiency, yellowing of leaves, leaf drop, and stunted plant growth [11].

Beneficial effects of cobalt: Nitrogen fixation: Cobalt is essential for the biological process of nitrogen fixation carried out by certain bacteria such as Rhizobium, which provides nitrogen to plants, especially legumes. Vitamin B12 component: Cobalt is part of the

structure of vitamin B12, a vitamin essential for the growth of organisms, including plants [12].

Promoting growth and development: Cobalt helps improve plant growth through its role in auxin metabolism. Increasing stress resistance: Cobalt increases plants' tolerance to environmental stress and pathogens [13].

Toxic effects of cobalt: Plant toxicity: High concentrations of cobalt in soil lead to phytotoxicity. Iron deficiency: Cobalt accumulation in some plants can lead to iron deficiency, which stunts plant growth. Leaf deterioration: Cobalt toxicity manifests as yellowing of leaves, discoloration, premature leaf closure, leaf drop, and decreased weight. Effect on photosynthesis: Iron

deficiency resulting from cobalt toxicity negatively impacts photosynthesis [14].

#### **MATERIALS AND METHODS**

In this experiment, ten plastic pots containing ten litres of water were used to plant fifty grammes of Lemna minor. There are seven litres of chlorine-free pond water in each jar. Weekly samples of plants were collected from the ponds to measure the levels of heavy metals, protein, and chlorophyll in accordance with the required test. Sampling and growth were carried out for five weeks. Furthermore, the study used three distinct cobalt concentrations (10, 20, and 30 mg/L) [15]. Protein content in aquatic plant tissues was measured using the Bradford method, and total chlorophyll content was measured using a chlorophyll meter [16].

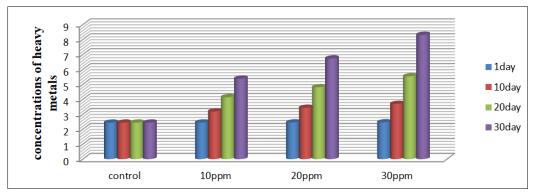



Figure 1: Three different concentrations of Cobalt during the experiment period in Lemina minor tissue

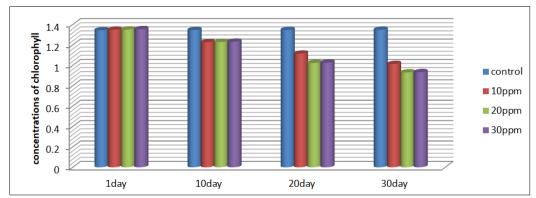



Figure 2: Effect concentrations of Cobalt on chlorophyll in *Lemina minor* tissue

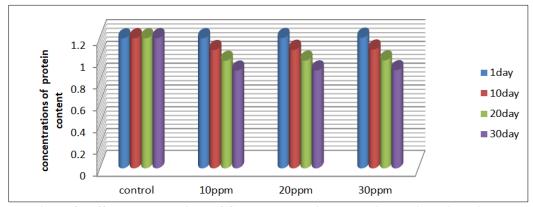



Figure 3: Effect concentrations of Cobalt on protein content in Lemina minor tissue

#### **RESULTS AND DISCUSSION**

The results of the study showed that as the experiment came to an end, the levels of heavy metals in the aquatic plants under examination rose. Figure 1 shows the accumulation of cobalt in the aquatic plant Lemina minor relative to the control. This indicates that the studied aquatic plants are able to collect this element in their tissues, have a special defence mechanism against high concentrations of the element, or absorb high levels of cobalt and transform them into inactive forms of holes [17]. Variations in the amount of cobalt deposited in plant bodies may be influenced by species, physiological condition, and elemental sensitivity [18].

Figure (2) shows how much chlorophyll is present in the aquatic plant Lemina minor compared to the control. At the end of the trial, the total amount of chlorophyll in the aquatic plant had decreased, according to the study's findings. Chlorophyll levels in the experimental plants have dropped as a result of the presence of these particularly toxic substances, which can accumulate in plant tissue [19].

Figure (3) showed Because the protein in Lemina minor plants' tissues is used up during vital processes or metabolic activities that take place in order to withstand the concentration of cobalt, the percentage of protein content in their tissues decreases, which is the cause of the decline in protein content [20]. This percentage decreases with increasing exposure duration until End of Experience is achieved [21].

### **REFERENCES**

- 1. Davies, K. M., Jibran, R., Zhou, Y., Albert, N. W., Brummell, D. A., Jordan, B. R., *et al.*, (2020). The evolution of flavonoid biosynthesis: a bryophyte perspective. Front. Plant Sci. 11:7. doi: 10.3389/fpls.2020.00007
- Din, M., Nelofer, R., Salman, M., Abdullah, K. F. H, and Khan, A. (2019). Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol. Rep. 22:e00323. doi: 10.1016/j.btre.2019.e00323
- Garcia, M. M., Pereira, L. C., Braccini, A. L., Angelotti, P., Suzukawa, A. K., Marteli, D. C., et al., (2017). Effects of Azospirillum brasilense on growth and yield compounds of maize grown at nitrogen limiting conditions. Revista de Ciências Agrárias 40, 353–362. doi: 10.19084/RCA16101
- García-Caparrós, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., et al., (2020). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot. Rev. 40, 353–362. doi: 10.1007/s12229-020-09231-1
- 5. Gonzalez-Montana, J. R., Escalera-Valente, F., Alonso, A. J., Lomillos, J. M., Robles, R., and Alonso, M. E. (2020). Relationship between vitamin

- B12 and cobalt metabolism in domestic ruminant: an update. Animals 10:1855. doi: 10.3390/ani10101855
- Guo, M., and Chen, Y. (2018). Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Rev. Environ. Sci. Biotechnol. 17, 259–284. doi: 10.1007/s11157-018-9461-6
- Hansen, B., Thorling, L., Schullehner, J., Termansen, M., and Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 7:8566. doi: 10.1038/s41598-017-07147-2
- 8. Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., *et al.*, (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. doi: 10.3390/antiox9080681
- Keshavarz, H., and Moghadam, R. S. G. (2017). Seed priming with cobalamin (vitamin B12) provides significant protection against salinity stress in the common bean. Rhizosphere 3, 143–149. doi: 10.1016/j.rhisph.2017.04.010.
- Khan, A. R., Park, G. S., Asaf, S., Hong, S. J., Jung, B. K., and Shin, J. H. (2017). Complete genome analysis of Serratia marcescens RSC-14: a plant growth-promoting bacterium that alleviates cadmium stress in host plants. PloS ONE 12:e0171534. doi: 10.1371/journal.pone.0171534
- Khrustalev, V., Khrustaleva, T., Poboinev, V., Karchevskaya, C., Shablovskaya, E., and Terechova, T. (2019). Cobalt(ii) cation binding by proteins. Metallomics 11, 1743–1752. doi: 10.1039/C9MT00205G
- 12. Das, H. K. (2019). Azotobacters as biofertilizer. Adv. Appl. Microbiol. 108, 1–43. doi: 10.1016/bs.aambs.2019.07.001
- Hawco, N. J., McIlvin, M. M., Bundy, R. M., Tagliabue, A., Goepfert, T. J., Moran, D. M., *et al.*, (2020). Minimal cobalt metabolism in the marine cyanobacterium Prochlorococcus. Proc. Natl. Acad. Sci. 117, 15740–15747. doi: 10.1073/pnas.2001393117
- Chang, A. C. G., Chen, T., Li, N., and Duan, J. (2019). Perspectives on endosymbiosis in coralloid roots: association of cycads and cyanobacteria. Front. Microbiol. 10:1888. doi: 10.3389/fmicb.2019.01888
- 15. Qassim A. A. AL-Janabi, Saad Kadhim A. Al-Kalidy& Zaid B. Hameed (2021). Effects of heavy metals on physiological status for Schoenoplectus litoralis & Salvinia natans L 1st INTERNATIONAL VIRTUAL CONFERENCE OF ENVIRONMENTAL SCIENCES IOP Conf. Series: Earth and Environmental Science 722 (2021) 012012 IOP Publishing doi:10.1088/1755-1315/722/1/012012.

- Qassim A. Ahmood and Mohammed H. Al-Jawasim (2019). EFFECTS OF HEAVY METALS ON PHYSIOLOGICAL STATUS OF PLANTS. Plant Archives Vol. 19 No. 2, 2019 pp. 2865-2871 e-ISSN:2581-6063 (online), ISSN:0972-5210.
- Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., et al., (2021). Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield Stability. Front. Microbiol. 12:628379. doi: 10.3389/fmicb.2021.628379
- 18. Akeel, A., and Jahan, A. (2020). "Role of cobalt in plants: its stress and alleviation," in Contaminants in Agriculture, eds M. Naeem, A. Ansari, and S. Gill (Cham: Springer), 339–352.
- Ciotea, D., Ungureanu, E., Mustatea, G., and Popa, M. E. (2021). Incidence of lead, cadmium, chromium, nickel and cobalt in basil, rosemary and peppermint seasonings from Romanian market. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 78, 19–32. doi: 10.15835/buasvmcn-fst:2021.0002
- 20. Jalilian, N., Najafpour, G., and Khajouei, M. (2019). Enhanced vitamin B12 production using Chlorella vulgaris. IJE Transac. Basics 32, 1–9. doi: 10.5829/ije.2019.32.01a.01
- 21. Jensen, E. L., Maberly, S. C., and Gontero, B. (2020). Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae. Int. J. Mol. Sci. 21:2922. doi: 10.3390/ijms21082922.